Aspergillus fumigatus is an environmental mold that causes life-threatening respiratory infections in immunocompromised patients. The plateaued effectiveness of antifungal therapy and the increasing prevalence of triazole-resistant isolates have led to an urgent need to optimize and expand the current treatment options. For the transition of research to models in the time- and resource-consuming preclinical drug development pipeline, Galleria mellonella larvae have been introduced as a valuable screening intermediate. Despite the high potential of this model, the current readouts of fungal infections in G. mellonella are insensitive, irreproducible, or invasive. To optimize this model, we aimed for the longitudinal quantification of the A. fumigatus burden in G. mellonella using noninvasive bioluminescence imaging (BLI). Larvae were infected with A. fumigatus strains expressing a red-shifted firefly luciferase, and the substrate dosage was optimized for the longitudinal visualization of the fungal burden without affecting larval health. The resulting photon flux was successfully validated for fungal quantification against colony forming units (CFU) analyses, which revealed an increased dynamic range from BLI detection. Comparison of BLI to survival rates and health index scores additionally revealed improved sensitivity for the early discrimination of differences in fungal burdens as early as 1 day after infection. This was confirmed by the improved detection of treatment efficacy against triazole-susceptible and -resistant strains. In conclusion, we established a refined G. mellonella aspergillosis model that enables the noninvasive real-time quantification of A. fumigatus by BLI. This model provides a quick and reproducible system for the evaluation of treatment options and is in line with 3Rs recommendations. Triazole-resistant Aspergillus fumigatus strains are rapidly emerging, and resistant infections are difficult to treat, causing mortality rates of up to 88%. The recent WHO priority list underscores A. fumigatus as one of the most critical fungal pathogens for which innovative antifungal treatment should be (urgently) prioritized. Here, we deliver a Galleria mellonella model for triazole-susceptible and -resistant A. fumigatus infections combined with a statistically powerful quantitative, longitudinal readout of the A. fumigatus burden for optimized preclinical antifungal screening. G. mellonella larvae are a convenient invertebrate model for antifungal screenings, but so far, the model has been limited by variable and insensitive observational readouts. We show that bioluminescence imaging-based fungal burden quantification outperforms these readouts in reliability, sensitivity, and time to the detection of treatment effects in both triazole-susceptible and -resistant infections and can thus lead to better translatability from antifungal screening results to confirmation in mouse and human studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433797PMC
http://dx.doi.org/10.1128/spectrum.00825-23DOI Listing

Publication Analysis

Top Keywords

aspergillus fumigatus
12
galleria mellonella
12
triazole-susceptible -resistant
12
fumigatus
9
real-time quantification
8
fumigatus infections
8
bioluminescence imaging
8
treatment options
8
mellonella larvae
8
quantification fumigatus
8

Similar Publications

Antimicrobial Potential of Secalonic Acids from Arctic-Derived INA 01369.

Antibiotics (Basel)

January 2025

Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia.

In this study, two compounds have been isolated from the Arctic-derived fungus INA 13460. Structural elucidation, performed using 2D NMR and HR-ESIMS data, has identified the compounds as stereoisomers of secalonic acids, dimeric tetrahydroxanthones. The absolute configurations of these stereoisomers have been determined through conformational NMR analysis and circular dichroism spectroscopy.

View Article and Find Full Text PDF

Antibacterial and Antifungal Activities of Linear and Cyclic Peptides Containing Arginine, Tryptophan, and Diphenylalanine.

Antibiotics (Basel)

January 2025

Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA.

We have previously reported peptides composed of sequential arginine (R) residues paired with tryptophan (W) or 3,3-diphenyl-L-alanine residues (Dip), such as cyclic peptides [RW] and [R(Dip)], as antibacterial agents. Herein, we report antibacterial and antifungal activities of five linear peptides, namely ((DipR)(WR)), ((DipR)(WR)), ((DipR)(WR)), ((DipR)(WR)), and (DipR)R, and five cyclic peptides [(DipR)(WR)], [(DipR)(WR)], [(DipR)(WR)], [(DipR)(WR)], and [DipR], containing alternate positively charged R and hydrophobic W and Dip residues against fungal, Gram-positive, and Gram-negative bacterial pathogens. The minimum inhibitory concentrations (MICs) of all peptides were determined by the micro-broth dilution method against , , , , , , , , and .

View Article and Find Full Text PDF

Severe fever with thrombocytopenia syndrome complicated with aspergillus endocarditis and multiple organ infarctions after glucocorticoid treatment in an immunocompetent man: a case report.

BMC Infect Dis

January 2025

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.

Background: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease characterized by leukopenia and thrombocytopenia, and aspergillosis is a common complication in severe cases. Previous studies have reported cases of SFTS complicated with invasive pulmonary aspergillosis (IPA) and central nervous system aspergillosis. Here, we present the first case of an immunocompetent patient with SFTS who progressed to IPA and Aspergillus endocarditis after glucocorticoid treatment, and embolism of the vegetations from the left ventricle led to multiple infarctions in the brain, kidney, and spleen.

View Article and Find Full Text PDF

Positive sputum fungal culture, fungal sensitisation and airway microbial diversity in asthmatic children.

Med Mycol

January 2025

Department of Respiratory Sciences, College of Life Sciences, NIHR Biomedical Research Centre (Respiratory theme), University of Leicester, Leicester, UK. Department of Paediatric Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK.

Sensitisation to thermotolerant fungi such as Aspergillus fumigatus and Candida albicans which can colonise the airways is associated with poor lung function in children with asthma. Dysbiosis of bacteria and fungi in the airway microbiome has been reported between health and asthma but has yet to be characterised for fungal sensitised asthmatic children. We investigated if microbial diversity of the airways is altered in fungal sensitised school-age asthmatic children.

View Article and Find Full Text PDF

RNA-binding protein Nrd1 plays a role in RNA polymerase II transcription termination. In this study, we showed that the orthologous NrdA is important in global mRNA expression and secondary metabolism in species. We constructed an conditional expression strain using the Tet-On system in mut.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!