The emerging role of auxins as bacterial signal molecules: Potential biotechnological applications.

Microb Biotechnol

Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.

Published: August 2023

Microorganisms are exposed in their natural niches to a wide diversity of signal molecules. Specific detection of these signals results in alterations in microbial metabolism and physiology. Auxins like indole-3-acetic acid are key phytohormones that regulate plant growth and development. Nonetheless, auxin biosynthesis is not restricted to plants but is ubiquitous in all kingdoms of life. This wide phylogenetic distribution of auxins production, together with the diversity of regulated cellular processes, have made auxins key intra- and inter-kingdom signal molecules in life modulating, for example microbial physiology, metabolism and virulence. Despite their increasing importance as global signal molecules, the mechanisms by which auxins perform their regulatory functions in microorganisms are largely unknown. In this article, we outline recent research that has advanced our knowledge of the mechanisms of bacterial auxin perception. We also highlight the potential applications of this research in aspects such as antibiotic production, biosensor design, plant microbiome engineering and antivirulence therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364314PMC
http://dx.doi.org/10.1111/1751-7915.14235DOI Listing

Publication Analysis

Top Keywords

signal molecules
16
auxins
5
emerging role
4
role auxins
4
auxins bacterial
4
signal
4
bacterial signal
4
molecules
4
molecules potential
4
potential biotechnological
4

Similar Publications

The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIA).

View Article and Find Full Text PDF

P2YR-IGFBP2 signaling: new contributor to astrocyte-neuron communication.

Purinergic Signal

January 2025

International Joint Research Centre On Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.

In a recent article published in Nature Communications (Shigetomi et al Nat Commun 15(1):6525, 2024), Shigetomi et al. identified that upregulated astrocytic purinergic P2Y receptors (P2YR), acting via the downstream molecule, insulin-like growth factor binding protein 2 (IGFBP2), play a crucial role in neuronal hyperexcitability. In epilepsy and stroke models, P2YR-IGFBP2 signaling was found to mediate astrocyte-driven neuronal hyperexcitability and so is a new contributor to astrocyte-neuron communication.

View Article and Find Full Text PDF

Melanoma is an immunogenic tumor. The melanoma tumor immune microenvironment (TIME) is made up of a heterogenous mix of both immune and non-immune cells as well as a multitude of signaling molecules. The interactions between tumor cells, immune cells and signaling molecules affect tumor progression and therapeutic responses.

View Article and Find Full Text PDF

Vector-borne diseases pose a severe threat to human life, contributing significantly to global mortality. Understanding the structure-function relationship of the vector proteins is pivotal for effective insecticide development due to their involvement in drug resistance and disease transmission. This study reports the structural and dynamic features of D1-like dopamine receptors (DARs) in disease-causing mosquito species, such as Aedes aegypti, Culex quinquefasciatus, Anopheles gambiae, and Anopheles stephensi.

View Article and Find Full Text PDF

Reciprocal and non-reciprocal effects of clinically relevant SETBP1 protein dosage changes.

Hum Mol Genet

January 2025

Department of Human Genetics, McGill University, 3666 McTavish Street, Montreal, QC H3A 1Y2, Canada.

Many genes in the human genome encode proteins that are dosage sensitive, meaning they require protein levels within a narrow range to properly execute function. To investigate if clinically relevant variation in protein levels impacts the same downstream pathways in human disease, we generated cell models of two SETBP1 syndromes: Schinzel-Giedion Syndrome (SGS) and SETBP1 haploinsufficiency disease (SHD), where SGS is caused by too much protein, and SHD is caused by not enough SETBP1. Using patient and sex-matched healthy first-degree relatives from both SGS and SHD SETBP1 cases, we assessed how SETBP1 protein dosage affects downstream pathways in human forebrain progenitor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!