In external radiotherapy of head and neck (HN) cancers, the reduction of irradiation accuracy due to HN volume reduction often causes a problem. Adaptive radiotherapy (ART) can effectively solve this problem; however, its application to all cases is impractical because of cost and time. Therefore, finding priority cases is essential. This study aimed to predict patients with HN cancers are more likely to need ART based on a quantitative measure of large HN volume reduction and evaluate model accuracy. The study included 172 cases of patients with HN cancer who received external irradiation. The HN volume was calculated using cone-beam computed tomography (CT) for irradiation-guided radiotherapy for all treatment fractions and classified into two groups: cases with a large reduction in the HN volume and cases without a large reduction. Radiomic features were extracted from the primary gross tumor volume (GTV) and nodal GTV of the planning CT. To develop the prediction model, four feature selection methods and two machine-learning algorithms were tested. Predictive performance was evaluated by the area under the curve (AUC), accuracy, sensitivity and specificity. Predictive performance was the highest for the random forest, with an AUC of 0.662. Furthermore, its accuracy, sensitivity and specificity were 0.692, 0.700 and 0.813, respectively. Selected features included radiomic features of the primary GTV, human papillomavirus in oropharyngeal cancer and the implementation of chemotherapy; thus, these features might be related to HN volume change. Our model suggested the potential to predict ART requirements based on HN volume reduction .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516738PMC
http://dx.doi.org/10.1093/jrr/rrad052DOI Listing

Publication Analysis

Top Keywords

volume reduction
16
head neck
12
prediction model
8
volume
8
cases large
8
large reduction
8
radiomic features
8
predictive performance
8
accuracy sensitivity
8
sensitivity specificity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!