Microplastics are persistent pollutants that accumulate in the environment and can cause serious toxicity to mammals. At present, few technologies are able to quantitatively detect chemicals and provide morphological information simultaneously. Herein, we developed a dragonfly-wing-mimicking ZnO nanorod array decorated with AgNPs on polydimethylsiloxane (PDMS) as a surface-enhanced Raman spectroscopy (SERS) and photo-induced enhanced Raman spectroscopy (PIERS) substrate for trace analysis of microplastics. The Ag/ZnO@PDMS hybrid nanorod array endows the sensor with high sensitivity and signal repeatability (RSD ∼ 5.89%), ensuring the reliable quantitative analysis of microplastics. Importantly, when the noble metal-semiconductor substrate was pre-radiated with ultraviolet light, a surprising PIERS was attained, achieving an additional enhancement of 11.3-fold higher than the normal SERS signal. By combining the PIERS technology with the "coffee ring effect", the sensor successfully discerned microplastics of polyethylene (PE) and polystyrene (PS) at a trace level of 25 μg/mL even with a portable Raman device. It was capable of identifying PS microspheres in contaminated tap water, lake water, river water, and seawater with detection limits of 25, 28, 35, and 60 μg/mL, respectively. The recovery rates of PS microspheres in four water environments ranged from 94.8 to 102.4%, with the RSD ranging from 2.40 to 6.81%. Moreover, quantitative and visualized detection of microplastics was readily realized by our sensor. This portable PIERS sensor represents a significant step toward the generalizability and practicality of quantitative and visual sensing technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c06024 | DOI Listing |
Anal Chem
January 2025
Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.
Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
January 2025
UMR SayFood 0782, Université Paris-Saclay, INRAE, Palaiseau, AgroParisTech, France.
Assessing the contamination of paper and board (P&B) food packaging materials poses significant challenges due to the sensitivity limits of analytical methods and the low precision of sampling processes. This study aims to enhance the understanding of P&B food packaging contamination by investigating the distribution of contaminants at different scales using a combination of chromatographic and spectroscopic techniques. A total of 36 substances were targeted, including phthalates, photoinitiators, and bisphenol A.
View Article and Find Full Text PDFCrit Rev Anal Chem
January 2025
Department of Bioengineering, Faculty of Engineering, The University of Edinburgh, Edinburgh, UK.
Cells are the fundamental units of life, comprising a highly concentrated and complex assembly of biomolecules that interact dynamic ally across spatial and temporal scales. Living cells are constantly undergoing dynamic processes, therefore, to understand the interactions between drug molecules and living cells is of paramount importance in the biomedical sciences and pharmaceutical development. Compared with traditional end-point assays and fixed cell analysis, analysis of drug molecules in living cells can provide more insight into the effects of drugs on cells in real-time and allowing for a better understanding of drug mechanisms and effects, which will contribute to the development of drug developing and testing and personalize medicine.
View Article and Find Full Text PDFSmall
January 2025
Environment Research Institute, Shandong University, Qingdao, 266237, China.
The direct electrochemical conversion of bicarbonate solutions (i.e., captured CO) has emerged as a sustainable approach for integrating CO capture and utilization compared to the traditional independent and sequential route.
View Article and Find Full Text PDFAnal Sci
January 2025
Chitose Institute of Science and Technology, Chitose, Hokkaido, 066-8655, Japan.
Cartilage is a connective tissue composed of mainly water, collagen (COL) and proteoglycans (PGs) including chondroitin sulfate (CS). Near-infrared (NIR) spectroscopy is adequate for examination of soft and hard tissues with large amount of water non-destructively and non-invasively. We measured tablets containing CS and COL using NIR spectroscopy to develop an evaluation method for PGs in cartilage non-destructively and non-invasively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!