Dopamine receptor D3 (D3R) has gained attention as a promising therapeutic target for neurological disorders. In this study, an innovative click reaction strategy was employed to identify potential D3R binders. The ligand template, 1-phenyl-4-[4-(1H-1,2,3-triazol-5-yl)butyl]piperazine, with substitution at the 1,2,3-triazole ring, served as the starting point. Generated compounds underwent filtration based on their brain-to-blood concentration ratio (logBB), leading to the identification of 1-{4-[1-(decahydronaphthalen-1-yl)-1H-1,2,3-triazol-5-yl]butyl}-4-phenylpiperazine as the most promising candidate, displaying superior D3R affinity and blood-brain barrier (BBB) permeability compared to the reference ligand, eticlopride. Molecular dynamics simulations further supported these findings. This study presents a novel hit for designing D3R ligands and establishes a workflow utilizing click chemistry to screen compounds with BBB permeability. The proposed click reaction-based algorithm holds significant potential as a valuable tool in the development of effective antipsychotic compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4155/fmc-2022-0310 | DOI Listing |
Nat Biomed Eng
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
The utility of urinary tests for the monitoring of the treatment efficacy and adverse events of anticancer therapies is constrained by the low concentration of relevant urinary biomarkers. Here we report, using mice with lung cancer and treated with chemotherapy, of a urinary fluorescence test for the concurrent monitoring of the levels of a tumour biomarker (cathepsin B) and of a biomarker of chemotherapy-induced kidney injury (N-acetyl-β-D-glucosaminidase). The test involves two intratracheally administered urinary reporters leveraging caged bioorthogonal click handles for the biomarker-dependent activation of 'clickability' and renal clearance, and the bioorthogonal click reaction of each renally cleared reporter with paired fluorescence indicators in the collected urine.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China. Electronic address:
The existence of ochratoxin A (OTA) in agricultural products poses significant threats to human health and environment, underscoring the critical need for its prompt and precise quantification. A particle counting immunosensor for the highly sensitive detection of OTA was presented, employing SiO@CuO nanoparticles to facilitate click chemistry. The quantity of SiO@CuO nanoparticles, and consequently the Cu²⁺ concentration, can be directly altered through the immune response involving OTA.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Yazd University, Yazd, Iran.
A new humic acid-based nanomagnetic copper(II) composite was prepared and used as an eco-friendly recoverable catalyst for synthesizing 1,4-disubstituted 1,2,3-triazoles. The synthesis was done via the three-component click reaction of alkyl halide, sodium azide, and terminal alkyne with good to excellent yield. A simple magnetic copper acetate composite, FeO@HA-Cu(OAc), was prepared using humic acid and characterized by SEM, TEM, XRD, EDX, EDS-mapping, VSM, TGA, AAS, and FT-IR.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Computationally designed 29-residue peptides yield tetra-α-helical bundles with symmetry. The "bundlemers" can be bifunctionally linked via thiol-maleimide cross-links at their N-termini, yielding supramolecular polymers with unusually large, micrometer-scale persistence lengths. To provide a molecularly resolved understanding of these systems, all-atom molecular modeling and simulations of linked bundlemers in explicit solvent are presented.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!