The flexibility to associate with more than one symbiont may considerably expand a host's niche breadth. Coral animals and dinoflagellate micro-algae represent one of the most functionally integrated and widespread mutualisms between two eukaryotic partners. Symbiont identity greatly affects a coral's ability to cope with extremes in temperature and light. Over its broad distribution across the Eastern Pacific, the ecologically dominant branching coral, , depends on mutualisms with the dinoflagellates and . Measurements of skeletal growth, calcification rates, total mass increase, calyx dimensions, reproductive output and response to thermal stress were used to assess the functional performance of these partner combinations. The results show both host-symbiont combinations displayed similar phenotypes; however, significant functional differences emerged when exposed to increased temperatures. Negligible physiological differences in colonies hosting the more thermally tolerant refute the prevailing view that these mutualisms have considerable growth tradeoffs. Well beyond the Eastern Pacific, pocilloporid colonies with are found across the Pacific in warm, environmentally variable, near shore lagoonal habitats. While rising ocean temperatures threaten the persistence of contemporary coral reefs, lessons from the Eastern Pacific indicate that co-evolved thermally tolerant host-symbiont combinations are likely to expand ecologically and spread geographically to dominate reef ecosystems in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354691 | PMC |
http://dx.doi.org/10.1098/rspb.2023.1021 | DOI Listing |
Crit Rev Food Sci Nutr
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, China.
spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Civil, Geological, and Environmental Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Engineering Building, Saskatoon, SK, S7N 5A9, Canada.
Extending unfrozen water availability is critical for stress-tolerant bioremediation of contaminated soils in cold climates. This study employs the soil-freezing characteristic curves (SFCCs) of biostimulated, hydrocarbon-contaminated cold-climate soils to efficiently address the coupled effects of unfrozen water retention and freezing soil temperature on sub-zero soil respiration activity. Freezing-induced soil respiration experiments were conducted under the site-relevant freezing regime, programmed from 4 to - 10 °C at a seasonal soil-freezing rate of - 1 °C/day.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, USA.
Passive error correction protects logical information forever (in the thermodynamic limit) by updating the system based only on local information and few-body interactions. A paradigmatic example is the classical two-dimensional Ising model: a Metropolis-style Gibbs sampler retains the sign of the initial magnetization (a logical bit) for thermodynamically long times in the low-temperature phase. Known models of passive quantum error correction similarly exhibit thermodynamic phase transitions to a low-temperature phase wherein logical qubits are protected by thermally stable topological order.
View Article and Find Full Text PDFBMC Biol
December 2024
State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
Background: Global climate change significantly impacts ecosystems, particularly through temperature fluctuations that affect insect physiology and behavior. As poikilotherms, insect pests such as the globally devastating diamondback moth (DBM), Plutella xylostella, are especially vulnerable to rising temperatures and extreme heat events, necessitating effective adaptive mechanisms.
Results: Here we demonstrate the roles of zinc finger proteins (ZFPs) in mediating thermal adaptability in DBM.
Plant Cell Rep
December 2024
Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
Transcription factor OsGRAS2 regulates salt stress tolerance and yield in rice. Plant-specific GRAS transcription factors are involved in many different aspects of plant growth and development, as well as in biotic and abiotic stress responses, although whether and how they participate in salt stress tolerance in rice (Oryza sativa) remains unclear. A screen of a previously generated set of activation-tagged lines revealed that Activation Tagging Line 63 (AC63) displayed a salt stress-sensitive phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!