We report carrier relaxation dynamics in semiconducting tellurium nanowires (average diameter ∼ 10 nm) using ultrafast time-resolved terahertz spectroscopy. After photoexcitation using an 800 nm pump pulse, we observed an initial increase in the THz conductivity due to the absorption of THz radiation by photoexcited carriers. The time evolution of the differential conductivity (Δ() = () - ) shows a bi-exponential relaxation with the initial fast decay time scale of ∼ 25 ps followed by a longer relaxation time constant of ∼ 100 ps. Interestingly, the two time scales depend on the amount of the capping agent present on the surface of TeNWs, showing a faster relaxation of the photoexcited carriers as the percentage of capping decreases. This is physically interpreted as the surface state mediated relaxation mechanism of the photo-pumped carriers depending on the density of available surface states. A quantitative understanding is obtained using a coupled rate equation model taking into account the decay mechanisms determined from the surface mediated relaxation rate () and direct recombination rate () of the electron-hole pairs. Furthermore, the measured lattice temperature () dependent dynamics, showing a faster relaxation at lower temperature, is understood using the same rate equation model, giving a power law dependence of the electron-hole recombination rate () on as ∝ . This is explained by estimating using the van Roosbroeck-Shockley theory taking into account the density of states () of one-dimensional nanowires. Furthermore, to understand the measured frequency-dependent THz photoconductivity, we model Δ() using the Boltzmann transport equation taking into account the energy-dependent scattering rates showing the dominant role of short range () and Coulomb scattering () rates in the relaxation process, which further provides a measure of the charged and neutral impurity concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr01588bDOI Listing

Publication Analysis

Top Keywords

ultrafast time-resolved
8
tellurium nanowires
8
relaxation
8
photoexcited carriers
8
showing faster
8
faster relaxation
8
mediated relaxation
8
rate equation
8
equation model
8
recombination rate
8

Similar Publications

Fermi polarons are emerging quasiparticles when a bosonic impurity immersed in a fermionic bath. Depending on the boson-fermion interaction strength, the Fermi-polaron resonances exhibit either attractive or repulsive interactions, which impose further experimental challenges on understanding the subtle light-driven dynamics. Here, we report the light-driven dynamics of attractive and repulsive Fermi polarons in monolayer WSe devices.

View Article and Find Full Text PDF

[Pt(NCN)MeCN] (NCN = 1,3-di(2-pyridyl)benzene, MeCN = acetonitrile) forms oligomers in the ground state due to metallophilic interactions, and a Pt-Pt bond is formed with photoexcitation. Ultrafast excited-state dynamics of the [Pt(NCN)MeCN] dimer in acetonitrile is investigated by femtosecond time-resolved absorption (TA) and picosecond emission spectroscopy. The femtosecond TA signals exhibit 60 cm oscillations arising from the Pt-Pt stretching motion in the S dimer.

View Article and Find Full Text PDF

Pyrano[2,3-]pyrazole derivatives are a class of compounds exhibiting dual solvent-dependent fluorescence. This interesting and potentially useful optical property is attributed to the excited state intramolecular proton transfer (ESIPT). We have investigated excited state dynamics of these molecules in detail using femtosecond time-resolved fluorescence and transient absorption spectroscopy.

View Article and Find Full Text PDF

Proton transfer processes form the foundation of many chemical processes. In excited-state intramolecular proton transfer (ESIPT) processes, ultrafast proton transfer is impulsively initiated through light. Here, we explore time-dependent coupled atomic and electronic motions during and following ESIPT through computational time-resolved resonant inelastic X-ray scattering (RIXS).

View Article and Find Full Text PDF

Excitonic-Vibrational Interaction at 2D Material/Organic Molecule Interfaces Studied by Time-Resolved Sum Frequency Generation.

Nanomaterials (Basel)

November 2024

Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)], Fudan University, Shanghai 200433, China.

The hybrid heterostructures formed between two-dimensional (2D) materials and organic molecules have gained great interest for their potential applications in advanced photonic and optoelectronic devices, such as solar cells and biosensors. Characterizing the interfacial structure and dynamic properties at the molecular level is essential for realizing such applications. Here, we report a time-resolved sum-frequency generation (TR-SFG) approach to investigate the hybrid structure of polymethyl methacrylate (PMMA) molecules and 2D transition metal dichalcogenides (TMDCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!