The rise of multidrug-resistant (MDR) Gram-negative bacteria is a major global health problem necessitating the discovery of new classes of antibiotics. Novel bacterial topoisomerase inhibitors (NBTIs) target the clinically validated bacterial type II topoisomerases with a distinct binding site and mechanism of action to fluoroquinolone antibiotics, thus avoiding cross-resistance to this drug class. Here we report the discovery of a series of NBTIs incorporating a novel indane DNA binding moiety. X-ray cocrystal structures of compounds and bound to DNA gyrase-DNA were determined, revealing specific interactions with the enzyme binding pocket at the GyrA dimer interface and a long-range electrostatic interaction between the basic amine in the linker and the carboxylate of Asp83. Exploration of the structure-activity relationship within the series led to the identification of lead compound , which showed potent broad-spectrum activity against a panel of MDR Gram-negative bacteria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350941 | PMC |
http://dx.doi.org/10.1021/acsmedchemlett.3c00187 | DOI Listing |
J Med Chem
December 2024
Department of Chemistry, School of Science and Engineering, Saint Louis University, Saint Louis, Missouri 63103, United States.
Cryptosporidiosis is a diarrheal disease caused by the parasite resulting in over 100,000 deaths annually. Here, we present a structure-activity relationship study of the benzoic acid position (R) of pyrazolo[3,4-]pyrimidine lead SLU-2815 (), an inhibitor of parasite phosphodiesterase PDE1, resulting in the discovery of benzoxaborole SLU-10906 () as a benzoic acid bioisostere. Benzoxaborole is 10-fold more potent than against the parasite in a cell-based infection model (EC = 0.
View Article and Find Full Text PDFRSC Med Chem
November 2024
Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville Edwardsville IL 62026 USA
Somatostatin receptor-4 (SST) is a therapeutic target for several conditions, including Alzheimer's disease, seizures, neuropsychiatric disorders, and pain. Our previous work on 1,2,4-triazole derivatives led to enhanced SST binding affinity, selectivity, and functional activity. Herein we report the discovery of 3-thio-1,2,4-triazole series as selective and high affinity SST agonists.
View Article and Find Full Text PDFBrain Commun
November 2024
Department of Neurodegenerative Disease, Huntington's Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
Huntington's disease is an inherited neurodegenerative disorder caused by a CAG repeat expansion that encodes a polyglutamine tract in the huntingtin (HTT) protein. The mutant CAG repeat is unstable and expands in specific brain cells and peripheral tissues throughout life. Genes involved in the DNA mismatch repair pathways, known to act on expansion, have been identified as genetic modifiers; therefore, it is the rate of somatic CAG repeat expansion that drives the age of onset and rate of disease progression.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Department of Chemical and Materials Engineering, University of Nevada Reno, Reno, Nevada 89557, United States.
Single-molecule magnets (SMMs) with slow relaxation of magnetization and blocking temperatures above that of liquid nitrogen are essential for practical applications in high-density data storage devices and quantum computers. A rapid and accurate prediction of the effective magnetic relaxation barrier () is needed to accelerate the discovery of high-performance SMMs. Using density functional theory and multireference calculations, we explored correlations between , partial atomic charges, and the anisotropic barrier for a series of sandwich-type lanthanide complexes containing cyclooctatetraene, substituted cyclopentadiene, phospholyl, boratabenzene, or borane ligands.
View Article and Find Full Text PDFJ Med Chem
December 2024
Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States.
Malaria remains a serious global health challenge, yet treatment and control programs are threatened by drug resistance. Dihydroorotate dehydrogenase (DHODH) was clinically validated as a target for treatment and prevention of malaria through human studies with DSM265, but currently no drugs against this target are in clinical use. We used structure-based computational tools including free energy perturbation (FEP+) to discover highly ligand efficient, potent, and selective pyrazole-based DHODH inhibitors through a scaffold hop from a pyrrole-based series.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!