The pervasive repertoire of plant molecules with the potential to serve as a substitute for conventional antibiotics has led to obtaining better insights into plant-derived antimicrobial peptides (AMPs). The massive distribution of Small Open Reading Frames (smORFs) throughout eukaryotic genomes with proven extensive biological functions reflects their practicality as antimicrobials. Here, we have developed a pipeline named smAMPsTK to unveil the underlying hidden smORFs encoding AMPs for plant species. By applying this pipeline, we have elicited AMPs of various functional activity of lengths ranging from 5 to 100 aa by employing publicly available transcriptome data of five different angiosperms. Later, we studied the coding potential of AMPs-smORFs, the inclusion of diverse translation initiation start codons, and amino acid frequency. Codon usage study signifies no such codon usage biases for smORFs encoding AMPs. Majorly three start codons are prominent in generating AMPs. The evolutionary and conservational study proclaimed the widespread distribution of AMPs encoding genes throughout the plant kingdom. Domain analysis revealed that nearly all AMPs have chitin-binding ability, establishing their role as antifungal agents. The current study includes a developed methodology to characterize smORFs encoding AMPs, and their implications as antimicrobial, antibacterial, antifungal, or antiviral provided by SVM score and prediction status calculated by machine learning-based prediction models. The pipeline, complete package, and the results derived for five angiosperms are freely available at https://github.com/skbinfo/smAMPsTK.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2023.2235605 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!