Adenosine diphosphate ribosylation (ADP-ribosylation) is a crucial post-translational modification involved in important regulatory mechanisms of numerous cellular pathways including histone maintenance and DNA damage repair. To study this modification, well-defined ADP-ribosylated peptides, proteins, and close analogues thereof have been invaluable tools. Recently, proteomics studies have revealed histidine residues to be ADP-ribosylated. We describe here the synthesis of a complete set of triazole-isosteres of ADP-ribosylated histidine to serve as probes for ADP-ribosylating biomachinery. By exploiting Cu(I)- and Ru(II)-catalyzed click chemistry between a propargylglycine building block and an α- or β-configured azidoribose, we have successfully assembled the α- and β-configured 1,4- and 1,5-triazoles, mimicking N(τ)- and N(π)-ADP-ribosylated histidine, respectively. The ribosylated building blocks could be incorporated into a peptide sequence using standard solid-phase peptide synthesis and transformed on resin into the ADP-ribosylated fragments to provide a total of four ADP-ribosyl triazole conjugates, which were evaluated for their chemical and enzymatic stability. The 1,5-triazole analogues mimicking the N(π)-substituted histidines proved susceptible to base-induced epimerization and the ADP-ribosyl α-1,5-triazole linkage could be cleaved by the (ADP-ribosyl)hydrolase ARH3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407933 | PMC |
http://dx.doi.org/10.1021/acs.joc.3c00827 | DOI Listing |
Chembiochem
December 2024
Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, 2300 RA, Netherlands.
Adenosine diphosphate (ADP)-ribosylation is a ubiquitous post-translational modification that regulates vital biological processes like histone reorganization and DNA-damage repair through the modification of various amino acid residues. Due to advances in mass-spectrometry, the collection of long-known ADP-ribose (ADPr) acceptor sites, e. g.
View Article and Find Full Text PDFAngew Chem Weinheim Bergstr Ger
January 2024
The transfer of an adenosine diphosphate (ADP) ribose moiety to a nucleophilic side chain by consumption of nicotinamide adenine dinucleotide is referred to as ADP-ribosylation, which allows for the spatiotemporal regulation of vital processes such as apoptosis and DNA repair. Recent mass-spectrometry based analyses of the "ADP-ribosylome" have identified histidine as ADP-ribose acceptor site. In order to study this modification, a fully synthetic strategy towards α-configured N(τ)- and N(π)-ADP-ribosylated histidine-containing peptides has been developed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2024
Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, RA-2300, Leiden (The, Netherlands.
The transfer of an adenosine diphosphate (ADP) ribose moiety to a nucleophilic side chain by consumption of nicotinamide adenine dinucleotide is referred to as ADP-ribosylation, which allows for the spatiotemporal regulation of vital processes such as apoptosis and DNA repair. Recent mass-spectrometry based analyses of the "ADP-ribosylome" have identified histidine as ADP-ribose acceptor site. In order to study this modification, a fully synthetic strategy towards α-configured N(τ)- and N(π)-ADP-ribosylated histidine-containing peptides has been developed.
View Article and Find Full Text PDFJ Org Chem
August 2023
Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands.
Adenosine diphosphate ribosylation (ADP-ribosylation) is a crucial post-translational modification involved in important regulatory mechanisms of numerous cellular pathways including histone maintenance and DNA damage repair. To study this modification, well-defined ADP-ribosylated peptides, proteins, and close analogues thereof have been invaluable tools. Recently, proteomics studies have revealed histidine residues to be ADP-ribosylated.
View Article and Find Full Text PDFOrg Lett
June 2022
Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
A convergent synthesis provided nearly perfect τ-ADP-ribosylated histidine isosteres (His*-τ-ADPr) via a copper(I)-catalyzed cycloaddition between an azido-ADP-ribosyl analogue and an oligopeptide carrying a propargyl glycine. Both α- and β-configured azido-ADP-ribosyl analogues have been synthesized. The former required participation of the C-2 ester functionality during glycosylation, while the latter was obtained in high stereoselectivity from an imidate donor with a nonparticipating -methoxy benzyl ether.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!