The response to an applied electric field in the q_{T}=1/2 subphase of the MC881-MC452 binary mixture system is studied by using thick homeotropically aligned cells. In the ordinary antiferroelectric SmC_{A}^{*} and 1/2 (sub)phases, some nonplanar asymmetric distortions in the antiferroelectric unit cell structure produce induced polarization in the applied field direction, starts to unwind the helix from the beginning, and tends to align the averaged tilt plane direction parallel to the applied field. In the 1/2 subphase under consideration, however, the helix resists being deformed at the beginning and then the thresholdlike steep increase of birefringence Δn occurs in the transition from 1/2 to unwound SmC^{*} at a field of less than 0.5 V/µm; we conclude that the thermal fluctuations play an important role in promoting the director flip-flopping in a single layer under the applied field and bring about additional induced polarization, which counteracts the aforementioned ordinary induced one and prevents the helix from unwinding. This suggests that the Langevin-like director reorientation is the mechanism of the V-shaped switching which was actually observed in the thin films of Mitsui mixture [Phys. Rev. Lett. 87, 015701 (2001)0031-900710.1103/PhysRevLett.87.015701] and must have been used in prototyped thresholdless antiferroelectric liquid-crystal displays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.107.064701 | DOI Listing |
Langmuir
January 2025
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.
View Article and Find Full Text PDFEClinicalMedicine
December 2024
Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Infant alertness and neurologic changes can reflect life-threatening pathology but are assessed by physical exam, which can be intermittent and subjective. Reliable, continuous methods are needed. We hypothesized that our computer vision method to track movement, pose artificial intelligence (AI), could predict neurologic changes in the neonatal intensive care unit (NICU).
View Article and Find Full Text PDFNPJ Quantum Mater
January 2025
NIST Center for Neutron Research, Gaithersburg, MD 20899 USA.
The detailed anisotropic dispersion of the low-temperature, low-energy magnetic excitations of the candidate spin-triplet superconductor UTe is revealed using inelastic neutron scattering. The magnetic excitations emerge from the Brillouin zone boundary at the high symmetry and points and disperse along the crystallographic -axis. In applied magnetic fields to at least = 11 T along the , the magnetism is found to be field-independent in the ( 0) plane.
View Article and Find Full Text PDFEur Phys J C Part Fields
January 2025
MaLGa-DIBRIS, University of Genoa, Genoa, Italy.
In this work, we address the question of how to enhance signal-agnostic searches by leveraging multiple testing strategies. Specifically, we consider hypothesis tests relying on machine learning, where model selection can introduce a bias towards specific families of new physics signals. Focusing on the New Physics Learning Machine, a methodology to perform a signal-agnostic likelihood-ratio test, we explore a number of approaches to multiple testing, such as combining -values and aggregating test statistics.
View Article and Find Full Text PDFFront Public Health
December 2024
Department of Social, Behavioral, and Population Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States.
Introduction: The maternal mortality crisis in the United States disproportionately affects women who are Black, especially those living in the Gulf South. These disparities result from a confluence of healthcare, policy, and social factors that systematically place Black women at greater risk of maternal morbidities and mortality. This study protocol describes the Southern Center for Maternal Health Equity (SCMHE), a research center funded by the National Institutes of Health in 2023 to reduce preventable causes of maternal morbidity and mortality while improving health equity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!