Fluctuation dynamos occur in most turbulent plasmas in astrophysics and are the prime candidates for amplifying and maintaining cosmic magnetic fields. A few analytical models exist to describe their behavior, but they are based on simplifying assumptions. For instance, the well-known Kazantsev model assumes an incompressible flow that is δ-correlated in time. However, these assumptions can break down in the interstellar medium as it is highly compressible and the velocity field has a finite correlation time. Using the renewing flow method developed by Bhat and Subramanian (2014), we aim to extend Kazantsev's results to a more general class of turbulent flows. The cumulative effect of both compressibility and finite correlation time over the Kazantsev spectrum is studied analytically. We derive an equation for the longitudinal two-point magnetic correlation function in real space to first order in the correlation time τ and for an arbitrary degree of compressibility (DOC). This generalized Kazantsev equation encapsulates the original Kazantsev equation. In the limit of small Strouhal numbers St∝τ we use the Wentzel-Kramers-Brillouin approximation to derive the growth rate and scaling of the magnetic power spectrum. We find the result that the Kazantsev spectrum is preserved, i.e., M_{k}(k)∼k^{3/2}. The growth rate is also negligibly affected by the finite correlation time; however, it is reduced by the finite magnetic diffusivity and the DOC together.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.107.065210 | DOI Listing |
MethodsX
June 2025
Applied Geology Research Group, Faculty of Earth Sciences and Technology, Bandung Institute of Technology (ITB), Bandung, West Java 40132, Indonesia.
The first groundwater modeling of the Bandung Aquifer Basin in 2009 used a finite difference method with a 0.5 km² grid, representing three volcanic geological layers. It assumed uniform hydraulic properties and used an equivalent homogeneous aquifer with anisotropic hydraulic conductivity.
View Article and Find Full Text PDFWearable Technol
November 2024
Department of Kinesiology, Iowa State University, Ames, IA, USA.
Placing an inertial measurement unit (IMU) at the 5th lumbar vertebra (L5) is a frequently employed method to assess the whole-body center of mass (CoM) motion during walking. However, such a fixed position approach does not account for instantaneous changes in body segment positions that change the CoM. Therefore, this study aimed to assess the congruence between CoM accelerations obtained from these two methods.
View Article and Find Full Text PDFHeliyon
January 2025
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Vorobyovy Gory 1, Moscow, 119991, Russia.
We investigate the quantum correlation between light and matter in bipartite quantum systems, drawing on the Jaynes-Cummings model and the Tavis-Cummings model, which are well-established in cavity quantum electrodynamics. Through the resolution of the quantum master equation, we can derive the dissipative dynamics in open systems. To assess the extent of quantum correlation, several measures are introduced: von Neumann entropy, concurrence and quantum discord.
View Article and Find Full Text PDFJ Orthop Res
January 2025
Australian Centre for Precision Health and Technology (PRECISE), Griffith University, Gold Coast, Australia.
Effective surgical planning is crucial for maximizing patient outcomes following complex orthopedic procedures such as proximal femoral osteotomy. In silico simulations can be used to assess how surgical variations in proximal femur geometry, such as femur neck-shaft and anteversion angles, affect postoperative system mechanics. This study investigated the sensitivity of femur mechanics to postoperative neck-shaft angles, anteversion angles, and osteotomy contact areas using patient-specific finite element analysis informed by neuromusculoskeletal models.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Physics, Zhejiang University, Hangzhou, 310058, PR China.
The self-assembly of intrinsically disordered proteins (IDPs) into condensed phases and the formation of membrane-less organelles (MLOs) can be considered as the phenomenon of collective behavior. The conformational dynamics of IDPs are essential for their interactions and the formation of a condensed phase. From a physical perspective, collective behavior and the emergence of phase are associated with long-range correlations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!