A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Decoupling wing-shape effects of wing-swept angle and aspect ratio on a forward-flying butterfly. | LitMetric

The effect of wing shape on a forward-flying butterfly via decoupled factors of the wing-swept angle and the aspect ratio (AR) was investigated numerically. The wing-shape effect is a major concern in the design of a microaerial vehicle (MAV). In nature, the wing of a butterfly consists of partially overlapping forewing and hindwing; when the forewing sweeps forward or backward relative to the hindwing, the wing-swept angle and the AR of the entire wing simultaneously change. The effects of the wing-swept angle and AR on aerodynamics are coupled. To decouple their effects, we established wing-shape models with varied combinations of the wing-swept angle and AR based on the experimental measurement of two butterfly species (Papilio polytes and Kallima inachus) and developed a numerical simulation for analysis. In each model, the forewing and hindwing overlapped partially, constructing a single wing. Across the models, the wing-swept angle and AR of these single wings varied sequentially. The results show that, through our models, the effects of the wing-swept angle and AR were decoupled; both have distinct flow mechanisms and aerodynamic force trends and are consistent in the two butterfly species. For a fixed AR, a backward-swept wing increases lift and drag because of the enhanced attachment of the leading-edge vortex with increased strength of the wingtip vortex and the spanwise flow. For a fixed wing-swept angle, a small AR wing increases lift and decreases drag because of the large region of low pressure downstream and the wake-capture effect. Coupling these effects, the largest lift-to-drag ratio occurs for a forward-swept wing with the smallest AR. These results indicate that, in a flapping forward flight, sweeping a forewing forward relative to a hindwing is suitable for cruising. The flow mechanisms and decoupled and coupled effects of the wing-swept angle and the AR presented in this paper provide insight into the flight of a butterfly and the design of a MAV.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.107.065105DOI Listing

Publication Analysis

Top Keywords

wing-swept angle
36
effects wing-swept
16
wing-swept
9
angle
9
angle aspect
8
aspect ratio
8
forward-flying butterfly
8
forewing hindwing
8
relative hindwing
8
butterfly species
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!