Geometrical optics of first-passage functionals of random acceleration.

Phys Rev E

Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel.

Published: June 2023

Random acceleration is a fundamental stochastic process encountered in many applications. In the one-dimensional version of the process a particle is randomly accelerated according to the Langevin equation x[over ̈](t)=sqrt[2D]ξ(t), where x(t) is the particle's coordinate, ξ(t) is Gaussian white noise with zero mean, and D is the particle velocity diffusion constant. Here, we evaluate the A→0 tail of the distribution P_{n}(A|L) of the functional I[x(t)]=∫_{0}^{T}x^{n}(t)dt=A, where T is the first-passage time of the particle from a specified point x=L to the origin, and n≥0. We employ the optimal fluctuation method akin to geometrical optics. Its crucial element is determination of the optimal path-the most probable realization of the random acceleration process x(t), conditioned on specified A, n, and L. The optimal path dominates the A→0 tail of P_{n}(A|L). We show that this tail has a universal essential singularity, P_{n}(A→0|L)∼exp(-α_{n}L^{3n+2}/DA^{3}), where α_{n} is an n-dependent number which we calculate analytically for n=0, 1, and 2 and numerically for other n. For n=0 our result agrees with the asymptotic of the previously found first-passage time distribution.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.107.064122DOI Listing

Publication Analysis

Top Keywords

random acceleration
12
geometrical optics
8
a→0 tail
8
first-passage time
8
optics first-passage
4
first-passage functionals
4
functionals random
4
acceleration random
4
acceleration fundamental
4
fundamental stochastic
4

Similar Publications

Social Vulnerability and Biological Aging in New York City: An Electronic Health Records-Based Study.

J Urban Health

January 2025

Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.

Chronological age is not an accurate predictor of morbidity and mortality risk, as individuals' aging processes are diverse. Phenotypic age acceleration (PhenoAgeAccel) is a validated biological age measure incorporating chronological age and biomarkers from blood samples commonly used in clinical practice that can better reflect aging-related morbidity and mortality risk. The heterogeneity of age-related decline is not random, as environmental exposures can promote or impede healthy aging.

View Article and Find Full Text PDF

End-range movements are among the most demanding but least understood in the sport of tennis. Using male Hawk-Eye data from match-play during the 2021-2023 Australian Open tournaments, we evaluated the speed, deceleration, acceleration, and shot quality characteristics of these types of movement in men's Grand Slam tennis. Lateral end-range movements that incorporated a change of direction (CoD) were identified for analysis using k-means (end-range) and random forest (CoD) machine learning models.

View Article and Find Full Text PDF

Purpose: This study focused on reducing the margin for prostate cancer treatment using magnetic resonance imaging-guided radiotherapy by investigating the intrafractional motion of the prostate and different motion-mitigation strategies.

Methods: We retrospectively analyzed intrafractional prostate motion in 77 patients with low- to intermediate-risk prostate cancer treated with five fractions of 7.25 Gy on a 1.

View Article and Find Full Text PDF

Purpose: To investigate the effect of average intraocular pressure (IOP) on the true rate of glaucoma progression (RoP) in the United Kingdom Glaucoma Treatment Study (UKGTS).

Methods: UKGTS participants were randomized to placebo or Latanoprost drops and monitored for up to two years with visual field tests (VF, 24-2 SITA standard), IOP measurements, and optic nerve imaging. We included eyes with at least three structural or functional assessments (VF with <15% false-positive errors).

View Article and Find Full Text PDF

-related disorder (SRD) is a developmental and epileptic encephalopathy caused by a disruption of the gene. At the beginning of 2024, it is one of many rare monogenic brain disorders without disease-modifying treatments, but that is changing. This article chronicles the last 5 years, beginning when treatments for SRD were not publicly in development, to the start of 2024 when many SRD-specific treatments are advancing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!