AI Article Synopsis

Article Abstract

Background: The bacterium Bacillus coagulans has attracted interest because of its ability to produce spores and advantageous probiotic traits, such as facilitating food digestion in the intestine, managing some disorders, and controlling the symbiotic microbiota. Spore-forming probiotic bacteria are especially important in the probiotic industry compared to non-spore-forming bacteria due to their stability during production and high resistance to adverse factors such as stomach acid. When spore-forming bacteria are exposed to environmental stresses, they enter the sporulation pathway to survive. This pathway is activated by the final phosphorylation of the master regulator of spore response, Spo0A, and upon achieving the phosphorylation threshold. Spo0A is indirectly inhibited by some enzymes of the aspartate response regulator phosphatase (Rap) family, such as RapJ. RapJ is one of the most important Rap enzymes in the sporogenesis pathway, which is naturally inhibited by the pentapeptides.

Methods: This study used structure-based virtual screening and molecular dynamics (MD) simulation studies to find potential RapJ hits that could induce the sporulation pathway. The crystal structures of RapJ complexed with pentapeptide clearly elucidated their interactions with the enzyme active site.

Results: Based on the binding compartment, through molecular docking, MD simulation, hydrogen bonds, and binding-free energy calculations, a series of novel hits against RapJ named tandutinib, infigratinib, sitravatinib, linifanib, epertinib, surufatinib, and acarbose were identified. Among these compounds, acarbose obtained the highest score, especially in terms of the number of hydrogen bonds, which plays a major role in stabilizing RapJ-ligand complexes, and also according to the occupancy percentages of hydrogen bonds, its hydrogen bonds were more stable during the simulation time. Consequently, acarbose is probably the most suitable hit for RapJ enzyme. Notably, experimental validation is crucial to confirm the effectiveness of the selected ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-023-05664-8DOI Listing

Publication Analysis

Top Keywords

hydrogen bonds
16
sporulation pathway
12
potential rapj
8
rapj hits
8
bacillus coagulans
8
structure-based virtual
8
virtual screening
8
screening molecular
8
molecular dynamics
8
dynamics simulation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!