Bark beetle disturbances are a critical event in the life cycle of Norway spruce forests. However, our knowledge of their effects on ectomycorrhizal fungi (EMF), which play a key role in forest productivity and nutrient cycling, is still incomplete. Special attention has been paid to the dynamics and diversity of EMF communities in managed forests, but studies dealing with disturbed natural stands are underrepresented. We conducted a study in an unmanaged natural spruce forest in the Bohemian Forest (Czech Republic), which suffered severe forest dieback caused by bark beetle. Approximately a decade after the disturbance, the character of the forest structure in the study area (∼60 ha, 41 study plots) ranged from sites with open canopy and sparse tree cover to areas with dense spruce regeneration to patches of closed-canopy forest. We found that relative EMF abundance in soils was positively related to surviving tree and regeneration density. The number of surviving trees also positively affected species EMF richness and tended to support preservation of late-successional EMF species. Our results suggest that trees that survive bark beetle disturbance are key for the fate of the EMF community in natural forests.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsec/fiad082DOI Listing

Publication Analysis

Top Keywords

bark beetle
12
surviving trees
8
forest
7
emf
6
trees key
4
key elements
4
elements fate
4
fate ectomycorrhizal
4
ectomycorrhizal community
4
community severe
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!