Aims: Age predispose individual to major diseases, and the biological processes contributing to aging are currently under intense investigation. Hence, plant-based natural compounds could be a potential target to counteract aging and age-associated diseases. So, the present study aims to investigate the antiaging properties of a natural compound Baicalein (BAI) on C. elegans and to elucidate the pathways or signaling molecules involved.
Methods: Herein, we investigated the inhibitory effects of BAI on different Wnt ligands of C. elegans and its underlying mechanisms. Moreover, we monitored BAI's antiaging effect on the worms' lifespan and its different aging parameters. We employed different mutant and transgenic C. elegans strains to identify the pathways and transcription factors involved.
Key Findings: We first showed that BAI could downregulate different Wnt ligands mRNA expressions in C. elegans, resulting in enhanced expression of GATA transcription factor ELT-3 and antiaging gene Klotho. On further evaluation, it was observed that BAI could enhance the worm's lifespan via ELT-3 and SKN-1 transcription factors, whereas, for the protection of worms against external oxidative stress, both ELT-3 and DAF-16 transcription factors were involved. Moreover, sensitive aging parameters of worms, including lipofuscin and ROS accumulation, and the declined physiological and mechanical functions observed in aged worms were ameliorated by BAI.
Significance: This study highlighted BAI as a promising antiaging compound. This study also revealed the Wnt inhibitory potential of BAI with future implications for pharmacological target of age-associated diseases with aberrant activation of the Wnt pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2023.121946 | DOI Listing |
Int J Mol Sci
January 2025
Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, School of Medicine, International Campus, Zhejiang University, Haining 314400, China.
Colorectal cancer (CRC) is the third most common cancer globally, with limited effective biomarkers and sensitive therapeutic targets. An increasing number of studies have highlighted the critical role of tumor microenvironment (TME) imbalances, particularly immune escape due to impaired chemokine-mediated trafficking, in tumorigenesis and progression. Notably, CC chemokines (CCLs) have been shown to either promote or inhibit angiogenesis, metastasis, and immune responses in tumors, thereby influencing cancer development and patient outcomes.
View Article and Find Full Text PDFAnn Nutr Metab
January 2025
Department of Translational Medical Science, University of Naples Federico II, Napoli, Italy.
Background: Knowledge of the complex interplay between gut microbiota and human health is gradually increasing as it has just recently been a field of such great interest.
Summary: Recent studies have reported that communities of microorganisms inhabiting the gut influence the immune system through cellular responses and shape many physiological and pathophysiological aspects of the body, including muscle and bone metabolism (formation and resorption). Specifically, the gut microbiota affects skeletal homeostasis through changes in host metabolism, the immune system, hormone secretion, and the gut-brain axis.
BMC Mol Cell Biol
January 2025
Department of Biochemistry, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA.
Background: Bioengineering of human teeth for replacement is an appealing regenerative approach in the era of gene therapy. Developmentally regulated transcription factors hold promise in the quest because these transcriptional regulators constitute the gene regulatory networks driving cell fate determination. Atonal homolog 1 (Atoh1) is a transcription factor of the basic helix-loop-helix (bHLH) family essential for neurogenesis in the cerebellum, auditory hair cell differentiation, and intestinal stem cell specification.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956.
Hematopoietic stem and progenitor cells (HSPCs) arise only during embryonic development, and their identity specification, emergence from the floor of the dorsal aorta, and proliferation are all tightly regulated by molecular mechanisms such as signaling cues. Among these, Wnt signaling plays an important role in HSPC specification, differentiation, and self-renewal, requiring precise modulation for proper development and homeostasis. Wnt signaling is initiated when a Wnt ligand binds to cell surface receptors such as those encoded by the gene family, activating intracellular signaling pathways that regulate gene expression.
View Article and Find Full Text PDFbioRxiv
January 2025
Division of Newborn Medicine, Boston Children's Hospital, Boston, MA.
WNT2B is Wnt ligand which is able to support intestinal stem cells (ISC) in culture and support the intestinal epithelium in vivo. We have previously shown that WNT2B is critical for resistance to colitis, but not small intestinal injury, in the adult mouse. WNT2B is thought to coordinate with WNT3 in supporting ISC, and we have also shown that WNT3 expression is low in the early postnatal ileum in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!