This study hypothesized the existence of cultivar-associated correlations between grape berry metabolites and its microbial residents, in Douro wine region. Integrated metabolomics with metabarcoding showed that the microbial biodiversity is not associated to berry sugar concentration, but closely connected to the profile of amino acids, flavonoids and wax compounds, which drove cultivar differentiation together with the prevalence of pathogenic fungi, yeasts and bacteria, mainly Dothideomycetes and Gammaproteobacteria. Over 7000 metabolite-microbiota correlations with ρ >|0.99| exposed a core of 15 metabolites linked to 11 microbial taxa. Serine, oxalate, cyanidin-3-O-glucoside, petunidin-3-O-glucoside, gallic acid, germanicol, sitosterol and erythrodiol correlated negatively to the abundance of most taxa, including Alternaria, Aureobasidium, Pseudopithomyces, Pseudomonas and Sphingomonas. In contrast, phenylalanine, asparagine, alanine, (epi)gallocatechin and procyanidin gallate mediated positive metabolite-OTU correlations. E. necator and A. carbonarius correlated negatively with stigmasterol and amyrin. Complex fungi-bacteria relationships ruled by Dothideomycetes and Alphaproteobacteria further suggest tight host-microbe interactions at the carposphere.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.136859 | DOI Listing |
Food Chem
December 2023
Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal. Electronic address:
This study hypothesized the existence of cultivar-associated correlations between grape berry metabolites and its microbial residents, in Douro wine region. Integrated metabolomics with metabarcoding showed that the microbial biodiversity is not associated to berry sugar concentration, but closely connected to the profile of amino acids, flavonoids and wax compounds, which drove cultivar differentiation together with the prevalence of pathogenic fungi, yeasts and bacteria, mainly Dothideomycetes and Gammaproteobacteria. Over 7000 metabolite-microbiota correlations with ρ >|0.
View Article and Find Full Text PDFMicrob Biotechnol
June 2023
National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China.
Gut microbiota plays important roles in host metabolism. Whether and how much the gut microbiota in different gut locations contributes to the variations of host serum metabolites are largely unknown, because it is difficult to obtain microbial samples from different gut locations on a large population scale. Here, we quantified the gut microbial compositions using 16S rRNA gene sequencing for 1070 samples collected from the ileum, cecum and faeces of 544 F6 pigs from a mosaic pig population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!