A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modulation of n → π* Interaction in the Complexes of -Substituted Pyridines with Aldehydes: A Theoretical Study. | LitMetric

n → π* interaction is analogous to the hydrogen bond in terms of the delocalization of the electron density between the two orbitals. Studies on the intermolecular complexes stabilized by the n → π* interaction are scarce in the literature. Herein, we have studied intermolecular N···C═O n → π* interactions in the complexes of -substituted pyridines (-R-Py) with formaldehyde (HCHO), formyl chloride (HCOCl), and acetaldehyde (CHCHO) using quantum chemistry calculations. We have shown that the strength of the n → π* interaction can be modulated by varying the electronic substituents at the donor and acceptor sites in the complexes. Variation of the substituents at the position of the pyridine ring from the electron-withdrawing groups (EWGs) to the electron-donating groups (EDGs) results in a systematic increase in the strength of the n → π* interaction. The strength of this interaction is also modulated by tuning the electron density toward the carbonyl bond by substituting the hydrogen atom of HCHO with the methyl and chloro groups. The modulation of this interaction due to the electronic substitutions at the n → π* donor and acceptor sites in the complexes is monitored by probing the relevant geometrical parameters, binding energies, C═O frequency redshift, NBO energies, and electron density for this interaction derived from QTAIM and NCI index analyses. Energy decomposition analysis reveals that the electrostatic interaction dominates the binding energies of these complexes, while the charge transfer interaction, which is representative of the n → π* interaction, also has a significant contribution to these.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.3c03103DOI Listing

Publication Analysis

Top Keywords

→ π*
32
π* interaction
24
electron density
12
interaction
11
π*
8
complexes -substituted
8
-substituted pyridines
8
strength →
8
interaction modulated
8
donor acceptor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!