Wave damping by giant kelp, Macrocystis pyrifera.

Ann Bot

Bodega Marine Laboratory, University of California at Davis, 2099 Westshore Road, Bodega Bay, CA 94923, USA.

Published: March 2024

Background And Aims: The increased likelihood and severity of storm events has brought into focus the role of coastal ecosystems in provision of shoreline protection by attenuating wave energy. Canopy-forming kelps, including giant kelp (Macrocystis pyrifera), are thought to provide this ecosystem service, but supporting data are extremely limited. Previous in situ examinations relied mostly on comparisons between nominally similar sites with and without kelp. Given that other factors (especially seafloor bathymetry and topographic features) often differ across sites, efforts to isolate the effects of kelp on wave energy propagation confront challenges. In particular, it can be difficult to distinguish wave energy dissipation attributable to kelp from frictional processes at the seabed that often covary with the presence of kelp. Here, we use an ecological transition from no kelp to a full forest, at a single site with static bathymetry, to resolve unambiguously the capacity of giant kelp to damp waves.

Methods: We measured waves within and outside rocky reef habitat, in both the absence and the presence of giant kelp, at Marguerite Reef, Palos Verdes, CA, USA. Nested within a broader kelp restoration project, this site transitioned from a bare state to one supporting a fully formed forest (density of 8 stipes m-2). We quantified, as a function of incident wave conditions, the decline in wave energy flux attributable to the presence of kelp, as waves propagated from outside and into reef habitat.

Key Results: The kelp forest damped wave energy detectably, but to a modest extent. Interactions with the seabed alone reduced wave energy flux, on average, by 12 ± 1.4 % over 180 m of travel. The kelp forest induced an additional 7 ± 1.2 % decrease. Kelp-associated declines in wave energy flux were slightly greater for waves of longer periods and smaller wave heights.

Conclusions: Macrocystis pyrifera forests have a limited, albeit measurable, capacity to enhance shoreline protection from nearshore waves. Expectations that giant kelp forests, whether extant or enhanced through restoration, have substantial impacts on wave-induced coastal erosion might require re-evaluation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087658PMC
http://dx.doi.org/10.1093/aob/mcad094DOI Listing

Publication Analysis

Top Keywords

wave energy
28
giant kelp
20
kelp
14
macrocystis pyrifera
12
energy flux
12
wave
10
kelp macrocystis
8
shoreline protection
8
presence kelp
8
kelp forest
8

Similar Publications

Background: Right ventricular restrictive physiology (RVRP) is a common occurrence in repaired tetralogy of Fallot (rTOF). The relationship of RVRP with biventricular blood flow components and kinetic energy (KE) from 4-dimensional (4D) flow cardiovascular magnetic resonance (CMR) is unclear.

Objectives: The purpose of this study was to investigate the association of 4D flow CMR parameters with RVRP in rTOF patients.

View Article and Find Full Text PDF

The shortcomings of precious metal based catalysts have limited the development of novel energies. So, developing low-cost and high performance transition metal based catalysts is one of the most feasible way to substitute the precious metal based catalysts. In all of the developed catalysts for oxygen reduction reactions (ORR), the iron-based nitrogen doped carbon nanotube (N-CNT) show great promise.

View Article and Find Full Text PDF

Optimizing the Coordination Energy of Co-N Sites by Co Nanoparticles Integrated with Fe-NCNTs for Boosting PEMFC and Zn-Air Battery Performance.

Small

January 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.

Enhancing the catalytic performance and durability of M-N─C catalyst is crucial for the efficient operation of proton exchange membrane fuel cells (PEMFCs) and Zn-Air batteries (ZABs). Herein, an approach is developed for the in situ fabrication of a MOFs-derived porous carbon material, co-loaded with Co nanoparticles (NPs) and Co-N sites and integrated onto Fe-doped carbon nanotubes (CNTs), named Co-NC/Fe-NCNTs. Incorporating polymer-wrapped CNTs improves MOFs dispersion annealing at high temperature, which amplifies the three-phase boundary (TPB) by generating much more mesopores and exposing additional active sites within the catalysts layer.

View Article and Find Full Text PDF

Halorhodospira (Hlr.) halophila strain BN9622 is an extremely halophilic and alkaliphilic purple phototrophic bacterium and has been widely used as a model for exploring the osmoadaptive and photosynthetic strategies employed by phototrophic extreme halophiles that enable them to thrive in hypersaline environments. Here we present the cryo-EM structures of (1) a unique native Hlr.

View Article and Find Full Text PDF

Immobilization of 4-MBA & Cu on Au nanoparticles modified screen-printed electrode for glyphosate detection.

Talanta

January 2025

College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China; Dryland Farm Machinery Key Technology and Equipment Key Laboratory of Shanxi Province, Taigu, 030801, China.

This study introduces an innovative electrochemical biosensor, engineered through the functionalization screen-printed electrode (SPE) with a coordination complex comprised of 4-mercaptobenzoic acid (4-MBA) and copper ions (Cu), achieving precise quantitative determination of glyphosate. Electrodepositing gold nanoparticles (AuNPs) onto the electrode surface, forming a self-assembled monolayer (SAM) of 4-MBA via thiol-gold interactions, and immobilizing Cu via coordination bonding with the monolayer, finalizing the electrochemical biosensor construction as Cu/4-MBA/AuNPs/SPE. The successful modification of the biosensor interface is confirmed through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and electrochemical characterization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!