Arabidopsis calcium-dependent protein kinase CPK6 regulates drought tolerance under high nitrogen by the phosphorylation of NRT1.1.

J Exp Bot

Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.

Published: September 2023

Nitrogen (N) is an essential macronutrient for plant growth and development, and its availability is regulated to some extent by drought stress. Calcium-dependent protein kinases (CPKs) are a unique family of Ca2+ sensors with diverse functions in N uptake and drought-tolerance signaling pathways; however, how CPKs are involved in the crosstalk between drought stress and N transportation remains largely unknown. Here, we identify the drought-tolerance function of Arabidopsis CPK6 under high N conditions. CPK6 expression was induced by ABA and drought treatments. The mutant cpk6 was insensitive to ABA treatment and low N, but was sensitive to drought only under high N conditions. CPK6 interacted with the NRT1.1 (CHL1) protein and phosphorylated the Thr447 residue, which then repressed the NO3- transporting activity of Arabidopsis under high N and drought stress. Taken together, our results show that CPK6 regulates Arabidopsis drought tolerance through changing the phosphorylation state of NRT1.1, and improve our knowledge of N uptake in plants during drought stress.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erad277DOI Listing

Publication Analysis

Top Keywords

drought stress
16
calcium-dependent protein
8
cpk6 regulates
8
drought
8
drought tolerance
8
high conditions
8
conditions cpk6
8
cpk6
6
arabidopsis
4
arabidopsis calcium-dependent
4

Similar Publications

Ajowan () is an important spice in the food industry, as a well as a medicinal plant with remarkable antioxidant properties. In this study, its essential oil content, chemical composition, flavonoid content, phenolic content, and antioxidant capacity were evaluated under three irrigation regimes (50, 70, and 90% field capacity) and different amounts of nano silicon (0, 1.5, and 3 mM) in ten populations of ajowan.

View Article and Find Full Text PDF

Plant growth and development require water, but excessive water hinders growth. Sesame ( L.) is an important oil crop; it is drought-tolerant but sensitive to waterlogging, and its drought tolerance has been extensively studied.

View Article and Find Full Text PDF

In this study, the drought-responsive gene from barley was transferred to , and overexpression lines were obtained. The phenotypic characteristics of the transgenic plants, along with physiological indicators and transcription level changes of stress-related genes, were determined under drought treatment. Under drought stress, transgenic plants overexpressing exhibited enhanced drought tolerance and longer root lengths compared to wild-type plants.

View Article and Find Full Text PDF

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme widely involved in glycolysis in animal cells and in non-metabolic processes, including apoptosis and the regulation of gene expression. GAPDH is a ubiquitous protein that plays a pivotal role in plant metabolism and handling of stress responses. However, its function in plant stress resistance remains unknown.

View Article and Find Full Text PDF

from Improves Drought Tolerance by Reducing Stomatal Aperture and Inducing ABA Receptor Family Genes in Transgenic Poplar Plants.

Int J Mol Sci

December 2024

State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.

The basic helix-loop-helix (bHLH) family members are involved in plant growth and development, physiological metabolism, and various stress response processes. is a major turpentine-producing and wood-producing tree in seasonally dry areas of southern China. Its economic and ecological values are well known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!