A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Serum Lipidomic Fingerprints Encode Early Diagnosis and Staging of Lung Cancer on a Novel PbS/Au-Layered Substrate. | LitMetric

Serum Lipidomic Fingerprints Encode Early Diagnosis and Staging of Lung Cancer on a Novel PbS/Au-Layered Substrate.

ACS Appl Mater Interfaces

Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China.

Published: August 2023

Lung cancer (LC) is a major cause of mortality among malignant tumors. Early diagnosis through lipidomic profiling can improve prognostic outcomes. In this study, a uniform PbS/Au-layered substrate that enhances the laser desorption/ionization process, an interfacial process triggered on the substrate surface upon laser excitation, was designed to efficiently characterize the lipidomic profiles of LC patient serum. By controlling the stacking arrangement and particle sizes of PbS QDs and AuNPs, the optimized substrate promotes the generation of excited electrons and creates an enhanced electric field that polarizes analyte molecules, facilitating ion adduction formation ([M + Na] and [M + K]) and enhancing detection sensitivity down to the femtomole level. Combining multivariate statistics and machine learning, a distinct lipidomic biomarker panel is successfully identified for the early diagnosis and staging of LC, with an accurate prediction validated by an area under the curve of 0.9479 and 0.9034, respectively. We also found that 18 biomarkers were significantly correlated with six metabolic pathways associated with LC. These results demonstrate the potential of this innovative PbS/Au-layered substrate as a sensitive platform for accurate diagnosis of LC and facilitate the development of lipidomic-based diagnostic tools for other cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c03693DOI Listing

Publication Analysis

Top Keywords

early diagnosis
12
pbs/au-layered substrate
12
diagnosis staging
8
lung cancer
8
substrate
5
serum lipidomic
4
lipidomic fingerprints
4
fingerprints encode
4
encode early
4
diagnosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!