A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ovine Forestomach Matrix in the Surgical Management of Complex Lower-Extremity Soft-Tissue Defects. | LitMetric

Background: Chronic lower-extremity defects may lead to major amputations and have severe consequences on patient quality of life and mortality. Dermal matrices have become part of the reconstructive ladder and are often deployed in these scenarios to quickly build neodermis, especially in volumetric defects over exposed bone and tendon initially, to allow for subsequent closure by means of split-thickness skin grafting (STSG) or secondary intention. Ovine forestomach matrix (OFM) is a decellularized extracellular matrix (ECM) bioscaffold available in both sheet and particulate forms that can be used as a dermal matrix in various soft-tissue reconstruction procedures.

Methods: This retrospective case series evaluated the use of OFM products in the surgical reconstruction of 50 cases (n = 50) comprised of challenging lower-extremity defects from seven healthcare centers. Patient records were reviewed to identify comorbidities, defect cause, defect size, presence of exposed structures, Centers for Disease Control and Prevention contamination score, Wagner grade, OFM graft use, time to 100% granulation tissue, STSG use, overall time to heal, and postoperative complications. The primary study outcomes were time (days) to 100% granulation tissue formation, with secondary outcomes including overall time to wound closure (weeks), STSG take at 1 week, and complications.

Results: The results of this case series demonstrate OFM as a clinically effective treatment in the surgical management of complex lower-extremity soft-tissue defects with exposed structures in patients with multiple comorbidities. One application of OFM products was effective in regenerating well-vascularized neodermis, often in the presence of exposed structures, with a mean time to 100% granulation of 26.0 ± 22.2 days.

Conclusions: These data support the use of OFM as a safe, cost-effective, and clinically effective treatment option for coverage in complex soft-tissue wounds, including exposed vital structures, and to shorten the time to definitive wound closure in complicated patient populations.

Download full-text PDF

Source
http://dx.doi.org/10.7547/22-081DOI Listing

Publication Analysis

Top Keywords

exposed structures
12
100% granulation
12
ovine forestomach
8
forestomach matrix
8
surgical management
8
management complex
8
complex lower-extremity
8
lower-extremity soft-tissue
8
soft-tissue defects
8
lower-extremity defects
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!