A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

LncRNA AGPG Confers Endocrine Resistance in Breast Cancer by Promoting E2F1 Activity. | LitMetric

Unlabelled: Resistance to endocrine therapy represents a major concern for patients with estrogen receptor α-positive (ERα+) breast cancer. Endocrine therapy resistance is commonly mediated by activated E2F signaling. A better understanding of the mechanisms governing E2F1 activity in resistant cells could reveal strategies for overcoming resistance. Here, we identified the long noncoding RNA (lncRNA) actin gamma 1 pseudogene 25 (AGPG) as a regulator of E2F1 activity in endocrine-resistant breast cancer. Expression of AGPG was increased in endocrine-resistant breast cancer cells, which was driven by epigenomic activation of an enhancer. AGPG was also abnormally upregulated in patient breast tumors, especially in the luminal B subtype, and high AGPG expression was associated with poor survival of patients with ERα+ breast cancer receiving endocrine therapy. The upregulation of AGPG mediated resistance to endocrine therapy and cyclin-dependent kinase 4/6 inhibition in breast cancer cells. Mechanistically, AGPG physically interacted with PURα, thus releasing E2F1 from PURα and leading to E2F1 signaling activation in ERα+ breast cancer cells. In patients with breast cancer, E2F1 target genes were positively and negatively correlated with expression of AGPG and PURα, respectively. Coadministration of chemically modified AGPG siRNA and tamoxifen strongly suppressed tumor growth in endocrine-resistant cell line-derived xenografts. Together, these results demonstrate that AGPG can drive endocrine therapy resistance and indicate that it is a promising biomarker and potential therapeutic target in breast cancer.

Significance: Blockade of formation of the PURα/E2F1 complex by lncRNA AGPG activates E2F1 and promotes endocrine resistance, providing potential strategies for combatting endocrine-resistant breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-23-0015DOI Listing

Publication Analysis

Top Keywords

breast cancer
36
endocrine therapy
20
e2f1 activity
12
erα+ breast
12
endocrine-resistant breast
12
cancer cells
12
breast
11
agpg
10
cancer
9
lncrna agpg
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!