Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Inorganic metal halide perovskites such as CsPbI are promising for high-performance, reproducible, and robust solar cells. However, inorganic perovskites are sensitive to humidity, which causes the transformation from the black phase to the yellow δ, non-perovskite phase. Such phase instability has been a significant challenge to long-term operational stability. Here, a surface dimensionality reduction strategy is reported, using 2-(4-aminophenyl)ethylamine cation to construct a Dion-Jacobson 2D phase that covers the surface of the 3D inorganic perovskite structure. The Dion-Jacobson layer mainly grows at the grain boundaries of the perovskite, effectively passivating surface defects and providing favourable interfacial charge transfer. The resulting inorganic perovskite films exhibit excellent humidity resistance when submerged in an aqueous solution (isopropanol:water = 4:1 v/v) and exposed to a 50% humidity air atmosphere. The Dion-Jacobson 2D/3D inorganic perovskite solar cell (PSC) achieves a power conversion efficiency (PCE) of 19.5% with a V of 1.197 eV. It retains 83% of its initial PCE after 1260 h of maximum power point tracking under 1.2 sun illumination. The work demonstrates an effective way for stabilizing efficient inorganic perovskite solar cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202304150 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!