A direct experimental comparison of single-crystal CVD diamond and silicon carbide X-ray beam position monitors.

J Synchrotron Radiat

Diamond Light Source Ltd, Diamond House Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, United Kingdom.

Published: September 2023

Single-crystal chemical vapour deposition (CVD) diamond detectors are an established transmissive synchrotron beamline diagnostic instrument used for beam position and beam intensity monitoring. A recently commercialized alternative is silicon carbide (4H-SiC) devices. These have the potential to provide the same diagnostic information as commercially available single-crystal CVD diamond X-ray beam position monitors, but with a much larger transmissive aperture. At Diamond Light Source an experimental comparison of the performance of single-crystal CVD diamond and 4H-SiC X-ray beam position monitors has been carried out. A quantitative comparison of their performance is presented in this paper. The single-crystal diamond and 4H-SiC beam position monitors were installed in-line along the synchrotron X-ray beam path enabling synchronous measurements at kilohertz rates of the beam motion from both devices. The results of several tests of the two position monitors' performance are presented: comparing signal uniformity across the surface of the detectors, comparing kHz intensity measurements, and comparing kHz beam position measurements from the detectors. Each test is performed with a range of applied external bias voltages. A discussion of the benefits and limitations of 4H-SiC and single-crystal CVD diamond detectors is included.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481272PMC
http://dx.doi.org/10.1107/S1600577523005623DOI Listing

Publication Analysis

Top Keywords

beam position
24
cvd diamond
20
single-crystal cvd
16
x-ray beam
16
position monitors
16
beam
9
experimental comparison
8
silicon carbide
8
diamond detectors
8
comparison performance
8

Similar Publications

A high-power laser beam profiling system was set up to investigate the influence of the interaction between the laser beam and the process emissions during welding with a shaped beam profile. A positional instability of the beam on the workpiece in the order of magnitude of tens of µm and noticeable distortions of the beam shape were observed when no cross jet was used. Both perturbations were reduced when a cross jet was applied to remove the process emissions from the beam path and minimized when the cross jet was positioned closest to the workpiece.

View Article and Find Full Text PDF

Nonlinear emission phenomena observed in transition metal dichalcogenides (TMDCs) have significantly advanced the development of robust nonlinear optical sources within two-dimensional materials. However, the intrinsic emission characteristics of TMDCs are inherently dependent on the specific material, which constrains their tunability for practical applications. In this study, we propose a strategy for the selective enhancement and modification of second-harmonic generation (SHG) emission in a multilayer WS flake through the implementation of a silicon (Si)-based circular Bragg grating (CBG) structure positioned on an Au/SiO substrate.

View Article and Find Full Text PDF

Laser communications (lasercom) can enable more efficient and higher bandwidth communications than conventional radio frequency (RF) systems, but requires more sophisticated pointing and tracking (PAT) systems to acquire and maintain links. Liquid lens arrays can provide compact, nonmechanical beam steering as an alternative to fast-steering mirrors and mechanical gimbals. An array of two liquid lenses offset in perpendicular axes along with a third on-axis lens in the array are used for beam steering and divergence control, respectively.

View Article and Find Full Text PDF

In space-based gravitational wave detection, establishing ultra-long-distance and ultra-high-precision laser links between satellites is achieved through the laser acquisition and tracking system. The laser spot centroid positioning method, which offers low computational complexity and strong adaptability to beam shape, is currently the core measurement method during the laser acquisition phase. However, due to various interference factors encountered in practical tests, this algorithm often falls short of meeting the extremely high requirements.

View Article and Find Full Text PDF

The impact of three-dimensional (3D) dose delivery accuracy of C-arm linacs on the planning target volume (PTV) margin was evaluated for non-coplanar intracranial stereotactic radiosurgery (SRS). A multi-institutional 3D starshot test using beams from seven directions was conducted at 22 clinics using Varian and Elekta linacs with X-ray CT-based polymer gel dosimeters. Variability in dose delivery accuracy was observed, with the distance between the imaging isocenter and each beam exceeding 1 mm at one institution for Varian and nine institutions for Elekta.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!