Bone tissue engineering using stem cells to build bone directly on a scaffold matrix often fails due to lack of oxygen at the injury site. This may be avoided by following the endochondral ossification route; herein, a cartilage template is promoted first, which can survive hypoxic environments, followed by its hypertrophy and ossification. However, hypertrophy is so far only achieved using biological factors. This work introduces a Bioglass-Poly(lactic-co-glycolic acid@fibrin (Bg-PLGA@fibrin) construct where a fibrin hydrogel infiltrates and encapsulates a porous Bg-PLGA. The hypothesis is that mesenchymal stem cells (MSCs) loaded in the fibrin gel and induced into chondrogenesis degrade the gel and become hypertrophic upon reaching the stiffer, bioactive Bg-PLGA core, without external induction factors. Results show that Bg-PLGA@fibrin induces hypertrophy, as well as matrix mineralization and osteogenesis; it also promotes a change in morphology of the MSCs at the gel/scaffold interface, possibly a sign of osteoblast-like differentiation of hypertrophic chondrocytes. Thus, the Bg-PLGA@fibrin construct can sequentially support the different phases of endochondral ossification purely based on material cues. This may facilitate clinical translation by decreasing in-vitro cell culture time pre-implantation and the complexity associated with the use of external induction factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468889 | PMC |
http://dx.doi.org/10.1002/adhm.202300211 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!