Complex transcriptional control is a conserved feature of both eukaryotes and the viruses that infect them. Here, we illustrate this by combining high-density functional genomics, expression profiling, and viral-specific chromosome conformation capture to define with unprecedented detail the transcriptional regulation of a single gene, ORF68, from Kaposi's sarcoma-associated herpesvirus (KSHV). We first identified seven cis-regulatory regions by densely tiling the ~154 kb KSHV genome with CRISPRi. A parallel Cas9 nuclease screen indicated that three of these regions act as promoters of genes that regulate ORF68. RNA expression profiling demonstrated that three more of these regions act by either repressing or enhancing other distal viral genes involved in ORF68 transcriptional regulation. Finally, we tracked how the 3D structure of the viral genome changes during its lifecycle, revealing that these enhancing regulatory elements are physically closer to their targets when active, and that disrupting some elements caused large-scale changes to the 3D genome. These data enable us to construct a complete model revealing that the mechanistic diversity of this essential regulatory circuit matches that of human genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350069 | PMC |
http://dx.doi.org/10.1101/2023.07.08.548212 | DOI Listing |
Funct Integr Genomics
January 2025
ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
Waxy maize is highly preferred diet in developing countries due to its high amylopectin content. Enriching amylopectin in biofortified maize meets food security and fulfils the demand of rising industrial applications, especially bioethanol. The mutant waxy1 (wx1) gene is responsible for increased amylopectin in maize starch, with a wide range of food and industrial applications.
View Article and Find Full Text PDFDiscov Oncol
January 2025
NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, Jilin, China.
Activating protein 1 (AP-1) is a transcription factor composed of several protein families, Jun proteins and Fos proteins are the components of AP-1. AP-1 is involved in various cellular processes, such as proliferation, differentiation, apoptosis and inflammation. For tumor cells, AP-1 is considered to be a driver whose activity is associated with dysfunction and the onset, development, invasion, and migration of cancer.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China.
Soybean cyst nematode (SCN, Heterodera glycines) is a major pathogen harmful to soybean all over the world, causing huge yield loss every year. Soybean resistance to SCN is a complex quantitative trait controlled by a small number of major genes (rhg1 and Rhg4) and multiple micro-effect genes. Therefore, the continuous identification of new resistant lines and genes is needed for the sustainable development of global soybean production.
View Article and Find Full Text PDFElife
January 2025
Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, United States.
The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In , the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of , a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, CNRS UMR 5086 , Université Claude Bernard Lyon 1, F-69367 Lyon, France.
The nonsense-mediated mRNA decay (NMD) pathway triggers the degradation of defective mRNAs and governs the expression of mRNAs with specific characteristics. Current understanding indicates that NMD is often significantly suppressed during viral infections to protect the viral genome. In numerous viruses, this inhibition is achieved through direct or indirect interference with the RNA helicase UPF1, thereby promoting viral replication and enhancing pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!