Appropriate models to investigate the impact of novel nutritional strategies on the gut microbiota of infants living in rural Africa are scarce. Here, we aimed to develop such a continuous gut fermentation model based on the PolyFermS platform. Eight immobilized Kenyan infant fecal microbiota were used as inoculum for continuous PolyFermS colon models fed with medium mimicking the weaning infant diet. Fructo-oligosaccharides (FOS) supplementation (1, 4 and 8 g/L) and cultivation pH (5.8 and 6.3) were stepwise investigated. Conditions providing a close match between fecal and microbiota (pH 5.8 with 1 g/L FOS) were selected for investigating long-term stability of four Kenyan infant PolyFermS microbiota. The shared fraction of top bacterial genera between fecal and microbiota was high (74-89%) and stable during 107 days of continuous cultivation. Community diversity was maintained, and two distinct fermentation metabolite profiles, propiogenic and butyrogenic, of infant fecal microbiota established from day 8 onwards and stayed stable. We present here the first rationally designed and accurate continuous cultivation model of African infant gut microbiota. This model will be important to assess the effect of dietary or environmental factors on the gut microbiota of African infants with high enteropathogen exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350169PMC
http://dx.doi.org/10.21203/rs.3.rs-3101157/v1DOI Listing

Publication Analysis

Top Keywords

fecal microbiota
20
continuous cultivation
12
kenyan infant
12
infant fecal
12
gut microbiota
12
microbiota
9
infant
6
fecal
5
long-term continuous
4
cultivation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!