Drug degradation is a process that can render pharmaceuticals inactive without causing any visible distortion. This can disrupt the therapeutic process, and on occasion, when the process produces toxic metabolites, it can have much more fatal consequences. Light is one of the most significant components that might cause deterioration, and several attempts have been made to improve and increase the practical photosensitizing of nano-scaled pharmaceuticals. Considering this, the insolubility and aggregating qualities of fullerenes have received significant attention. Fullerene is considered to have a unique carbon structure. In order to gain improved water solubility and biocompatible properties, fullerenes have been combined with water-soluble, biodegradable, and adjustable polymers. More specifically, these linkers exhibit increased tumor cell identification and greater tumor cell suppression when linked to therapeutic ligands (tumor-targeting) or stimuliresponsive polymers. According to scientific studies, fullerene-drug combinations can be used in certain complex diseases, like infectious and viral types. Several studies have combined fullerenes into nano-emulsions or liposomes for various pharmacological objectives. In the current work, fullerene/polymer nanomaterials are discussed for potential therapeutic techniques for the treatment of various diseases, particularly cancer and AIDS. According to the research studies, fullerene is a suitable element with outstanding physical and chemical properties that has a wide range of potential applications in the pharmaceutical industry, including drug delivery system design, photodynamic cancer therapy, and antioxidant therapy.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1386207326666230718100553DOI Listing

Publication Analysis

Top Keywords

tumor cell
8
fullerenes
5
fullerenes help
4
help treatment
4
treatment diseases?
4
diseases? review
4
review article
4
article pharmaceutical
4
pharmaceutical usage
4
usage fullerenes
4

Similar Publications

EZH2 inhibition induces pyroptosis via RHA-mediated S100A9 overexpression in myelodysplastic syndromes.

Exp Hematol Oncol

January 2025

Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.

View Article and Find Full Text PDF

Alpha/beta values in pediatric medulloblastoma: implications for tailored approaches in radiation oncology.

Radiat Oncol

January 2025

Department of Radiotherapy and Radiooncology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Dusseldorf, Germany.

Background: Medulloblastoma is the most common malignant pediatric brain tumor, typically treated with normofractionated craniospinal irradiation (CSI) with an additional boost over about 6 weeks in children older than 3 years. This study investigates the sensitivity of pediatric medulloblastoma cell lines to different radiation fractionation schedules. While extensively studied in adult tumors, these ratios remain unknown in pediatric cases due to the rarity of the disease.

View Article and Find Full Text PDF

Background: The significance of the controlling nutritional status (CONUT) score in predicting the prognostic outcomes of diffuse large B-cell lymphoma (DLBCL) has been widely explored, with conflicting results. Therefore, the present meta-analysis aimed to identify the prognostic significance of the CONUT in DLBCL by aggregating current evidence.

Methods: The Web of Science, PubMed, Embase, CNKI and Cochrane Library databases were searched for articles from inception to October 15, 2024.

View Article and Find Full Text PDF

N7-methylguanosine modification in cancers: from mechanisms to therapeutic potential.

J Hematol Oncol

January 2025

Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression.

View Article and Find Full Text PDF

Extracellular matrix stiffness regulates colorectal cancer progression via HSF4.

J Exp Clin Cancer Res

January 2025

Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.

Background: Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood.

Methods: This study included 107 CRC patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!