This study investigates the effect of the macromolecular architecture of poly(vinylidene fluoride) (PVDF) on its thermally induced phase separation (TIPS) behavior and polymorphic crystallization in the PVDF/γ-butyrolactone (PVDF/γ-BL) system. Preparative PVDF fractions with specific macromolecular architecture and phase constitution are generated. The results show that PVDF's macromolecular architecture, particularly the degree of branching and regio-defects, plays a significant role in its temperature-dependent crystallization and resulting polymorphic phases. While regio-defects dominate crystallization in the temperature range between 30 and 25 °C, the degree of branching becomes decisive in the 25-20 °C interval. The developed fractions of PVDF are further analyzed in terms of their molecular weight distribution, revealing that the PVDF fractions crystallized out of solution have similar molecular weight distributions with lower dispersity compared with the feed polymer. These findings are crucial for macromolecular separation and adjustment of PVDF polymorphic properties and hence for the development of tailor-made PVDF matrix materials for composites and membranes. The findings suggest the possibility of polymorphous phase tailoring of PVDF based on macromolecular architecture due to temperature-controlled crystallization out of solution and strongly motivate further research to reveal deeper knowledge of regio-defect and branching influence of PVDF solution crystallization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202300177 | DOI Listing |
Colloids Surf B Biointerfaces
December 2024
Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Center of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China. Electronic address:
Polymethacrylate and its derivatives are widely used in food industry and biomedical applications for their plasticity, biocompatibility and optical transparency. However, susceptibility to bacterial growth on their surfaces limits their applications. In this study, linear and branched polyethyleneimine (PEI) molecules were grafted onto poly(ethyl methacrylate) (PEMA) via aminolysis using a simple one-step method to enhance the antibacterial properties of PEMA films.
View Article and Find Full Text PDFAnal Bioanal Chem
December 2024
Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006, Tartu, Estonia.
The analysis of the volatile compounds released by biological samples represents a promising approach for the non-invasive diagnosis of a disease. The present study, focused on a population of dogs infected with canine leishmaniasis, aimed to decipher the volatolomic profile associated with this disease in dogs, which represent the main animal reservoir for Leishmania pathogen transmission to humans. The volatiles emitted by the breath and hair of dogs were analysed employing the gas chromatography-mass spectrometry (GC-MS) technique.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry at Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States.
Biomacromolecular networks with multiscale fibrillar structures are characterized by exceptional mechanical properties, making them attractive architectures for synthetic materials. However, there is a dearth of synthetic polymeric building blocks capable of forming similarly structured networks. Bottlebrush polymers (BBPs) are anisotropic graft polymers with the potential to mimic and replace biomacromolecules such as tropocollagen for the fabrication of synthetic fibrillar networks; however, a longstanding limitation of BBPs has been the lack of rigidity necessary to access the lyotropic ordering that underpins the formation of collagenous networks.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.
The efficient separation of C₂H₂/CO₂ mixture is crucial for industrial applications. A promising strategy is proposed herein to fine-tune the C₂H₂/CO adsorption and separation by pillar-layered metal-organic framework (MOF) adsorbents via molecular rotation. Keeping the same ultramicroporous architecture, three Zn-X-TRZ (TRZ = 1,2,4-triazole) adsorbents are prepared with X-pillar rotors varying from 9,10-anthracenedicarboxylic acid (ADC), 1,4-naphthalenedicarboxylic acid (NDC) to 1,4-benzenedicarboxylic acid (BDC).
View Article and Find Full Text PDFMol Pharm
December 2024
School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Shirpur, Dhule, Maharashtra 425405, India.
Cancer has emerged as a global health crisis, claiming millions of lives annually. Dendrimers and dendronized nanoparticles, a novel class of nanoscale molecules with highly branched three-dimensional macromolecular structures, have gained significant attention in cancer treatment and diagnosis due to their unique properties. These dendritic macromolecules offer a precisely controlled branching architecture, enabling functionalization with specific targeting molecules to enhance the selective delivery of therapeutic agents to tumor cells while minimizing systemic toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!