The keto-switched photocatalysis of covalent organic frameworks (COFs) for efficient H evolution was reported for the first time by engineering, at a molecular level, the local structure and component of the skeletal building blocks. A series of imine-linked BT-COFs were synthesized by the Schiff-base reaction of 1, 3, 5-benzenetrialdehyde with diamines to demonstrate the structural reconstruction of enol to keto configurations by alkaline catalysis. The keto groups of the skeletal building blocks served as active injectors, where hot π-electrons were provided to Pt nanoparticles (NPs) across a polyvinylpyrrolidone (PVP) insulting layer. The characterization results, together with density functional theory calculations, indicated clearly that the formation of keto-injectors not only made the conduction band level more negative, but also led to an inhomogeneous charge distribution in the donor-acceptor molecular building blocks to form a strong intramolecular built-in electric field. As a result, visible-light photocatalysis of TP-COFs-1 with one keto group in the skeletal building blocks was successfully enabled and achieved an impressive H evolution rate as high as 0.96 mmol g h . Also, the photocatalytic H evolution rates of the reconstructed BT-COFs-2 and -3 with two and three keto-injectors were significantly enhanced by alkaline post-treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202309026 | DOI Listing |
Adv Mater
January 2025
Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.
In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, 119121 Moscow, Russia.
This study aimed to investigate whether the water-soluble pharmaceutical form of phosphatidylcholine nanoparticles (wPC) stimulated the catalytic activity of CYP enzymes 2C9 and 2D6. We have shown that electroenzymatic CYP2C9 catalysis to nonsteroidal anti-inflammatory drug naproxen as a substrate was enhanced from 100% to 155% in the presence of wPC in media. Electroenzymatic CYP2D6 activity in the presence of the adrenoceptor-blocking agent bisoprolol as a substrate was elevated significantly from 100% to 144% when wPC was added to potassium phosphate buffer solution.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Educational Science, University of Helsinki, 00014 Helsinki, Finland.
Cellulose is a homopolymer composed of β-glucose units linked by 1,4-beta linkages in a linear arrangement, providing its structure with intermolecular H-bonding networking and crystallinity. The participation of hydroxy groups in the H-bonding network results in a low-to-average nucleophilicity of cellulose, which is insufficient for executing a nucleophilic reaction. Importantly, as a polyhydroxy biopolymer, cellulose has a high proportion of hydroxy groups in secondary and primary forms, providing it with limited aqueous solubility, highly dependent on its form, size, and other materialistic properties.
View Article and Find Full Text PDFMolecules
December 2024
Chair for Integrated Systems and Photonics, Department of Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany.
Biological neural circuits are based on the interplay of excitatory and inhibitory events to achieve functionality. Axons form long-range information highways in neural circuits. Axon pruning, i.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
Objective: This study aimed to investigate the efficacy of M3-DPPE liposomal nanoparticles encapsulated with mRNA encoding cytokines (M3-mRNAs) in targeting macrophages for the treatment of inflammation-induced joint injury.
Methods: , M3-mRNAs were administered to peritoneal exudate macrophages (PEMs), and the uptake was assessed using flow cytometry. The mechanism of uptake was investigated by blocking the CLEC12A pathway with M3-SiCLEC12A and observing CD206-mediated endocytosis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!