More Americans are consuming diets higher in saturated fats and refined sugars than ever before. These trends could have serious consequences for the older population because high-fat diet (HFD) consumption, known to induce neuroinflammation, has been shown to accelerate and aggravate memory declines. We have previously demonstrated that short-term HFD consumption, which does not evoke obesity-related comorbidities, produced profound impairments to hippocampal-dependent memory in aged rats. These impairments were precipitated by increases in proinflammatory cytokines, primarily interleukin-1 beta (IL-1β). Here, we explored the extent to which short-term HFD consumption disrupts hippocampal synaptic plasticity, as measured by long-term potentiation (LTP), in young adult and aged rats. We demonstrated that (1) HFD disrupted late-phase LTP in the hippocampus of aged, but not young adult rats, (2) HFD did not disrupt early-phase LTP, and (3) blockade of the IL-1 receptor rescued L-LTP in aged HFD-fed rats. These findings suggest that hippocampal memory impairments in aged rats following HFD consumption occur through the deterioration of synaptic plasticity and that IL-1β is a critical driver of that deterioration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352252PMC
http://dx.doi.org/10.1038/s41538-023-00211-4DOI Listing

Publication Analysis

Top Keywords

hfd consumption
16
synaptic plasticity
12
aged rats
12
high-fat diet
8
short-term hfd
8
young adult
8
rats hfd
8
aged
6
hfd
6
consumption
5

Similar Publications

High-fat diet (HFD) consumption disrupts the gut microbiome, instigating metabolic disturbance, brain pathology, and cognitive decline via the gut-brain axis. Probiotic and prebiotic supplementation have been found to improve gut microbiome health, suggesting they could be effective in managing neurodegenerative disorders. This study explored the potential benefits of the probiotic strain Lactobacillus plantarum 20174 (L.

View Article and Find Full Text PDF

Long-term consumption of erythritol, a widely used sugar substitute, has been associated with increased risks of thrombosis and cardiometabolic diseases. In this study, we investigated the effects and mechanisms of allulose in mitigating these risks compared to erythritol using the clusterProfiler tool in R (version 4.12.

View Article and Find Full Text PDF

Background/objectives: Functional probiotics, particularly subsp. CKDB001, have shown potential as a therapeutic option for metabolic dysfunction-associated steatotic liver disease (MASLD). However, their effects have not been confirmed in in vivo systems.

View Article and Find Full Text PDF

Beer and its components show potential for reducing hepatic steatosis in rodent models through multiple mechanisms. This study aimed to evaluate beer's anti-steatotic effects in a high-fat diet (HFD)-induced mouse model of Metabolic dysfunction-Associated Liver Disease (MASLD) and to explore the underlying mechanisms. In the HFD group, steatosis was confirmed by altered blood parameters, weight gain, elevated liver lipid content, and histological changes.

View Article and Find Full Text PDF

Objective: The ventral tegmental area (VTA), a pivotal hub in the brain's reward circuitry, receives inputs from the lateral hypothalamic area (LHA). However, it remains unclear whether melanin-concentrating hormone (MCH) and orexin-A (OX-A) neurons in the LHA exert individual or cooperative influence on palatable food consumption in the VTA. This study aims to investigate the modulatory role of MCH and OX-A in hedonic feeding within the VTA of high-fat diet (HFD) mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!