Large language models (LLMs) can respond to free-text queries without being specifically trained in the task in question, causing excitement and concern about their use in healthcare settings. ChatGPT is a generative artificial intelligence (AI) chatbot produced through sophisticated fine-tuning of an LLM, and other tools are emerging through similar developmental processes. Here we outline how LLM applications such as ChatGPT are developed, and we discuss how they are being leveraged in clinical settings. We consider the strengths and limitations of LLMs and their potential to improve the efficiency and effectiveness of clinical, educational and research work in medicine. LLM chatbots have already been deployed in a range of biomedical contexts, with impressive but mixed results. This review acts as a primer for interested clinicians, who will determine if and how LLM technology is used in healthcare for the benefit of patients and practitioners.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41591-023-02448-8 | DOI Listing |
Sci Rep
January 2025
Department of Electrical Power, Adama Science and Technology University, Adama, 1888, Ethiopia.
Although the Transformer architecture has established itself as the industry standard for jobs involving natural language processing, it still has few uses in computer vision. In vision, attention is used in conjunction with convolutional networks or to replace individual convolutional network elements while preserving the overall network design. Differences between the two domains, such as significant variations in the scale of visual things and the higher granularity of pixels in images compared to words in the text, make it difficult to transfer Transformer from language to vision.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
February 2025
Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.
Background: Recent disease-modifying treatments for Alzheimer's disease show promise to slow cognitive decline, but show no efficacy towards reducing symptoms already manifested.
Objectives: To investigate the efficacy of a novel noninvasive brain stimulation technique in modulating cognitive functioning in Alzheimer's dementia (AD).
Design: Pilot, randomized, double-blind, parallel, sham-controlled study SETTING: Clinical research site at UT Southwestern Medical Center PARTICIPANTS: Twenty-five participants with clinical diagnoses of AD were enrolled from cognition specialty clinics.
Can J Ophthalmol
January 2025
Faculty of Medicine, University of Montreal, Montreal, QB, Canada; Department of Ophthalmology, Centre Hospitalier de l'Université de Montréal, Montreal, QB, Canada. Electronic address:
Objective: To evaluate the performance of large language models (LLMs), specifically Microsoft Copilot, GPT-4 (GPT-4o and GPT-4o mini), and Google Gemini (Gemini and Gemini Advanced), in answering ophthalmological questions and assessing the impact of prompting techniques on their accuracy.
Design: Prospective qualitative study.
Participants: Microsoft Copilot, GPT-4 (GPT-4o and GPT-4o mini), and Google Gemini (Gemini and Gemini Advanced).
J Biomed Inform
January 2025
Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, USA; VA Boston Healthcare System, 150 S Huntington Ave, Boston, 02130, MA, USA. Electronic address:
Objective: Electronic health record (EHR) systems contain a wealth of clinical data stored as both codified data and free-text narrative notes (NLP). The complexity of EHR presents challenges in feature representation, information extraction, and uncertainty quantification. To address these challenges, we proposed an efficient Aggregated naRrative Codified Health (ARCH) records analysis to generate a large-scale knowledge graph (KG) for a comprehensive set of EHR codified and narrative features.
View Article and Find Full Text PDFLancet Rheumatol
January 2025
Division of Rheumatology, Mayo Clinic, Rochester, MN 55905, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!