Structural characterization of protein-material interfacial interactions using lysine reactivity profiling-mass spectrometry.

Nat Protoc

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.

Published: August 2023

Understanding how proteins and materials interact is useful for evaluating the safety of biomedical micro/nanomaterials, toxicity estimation and design of nano-drugs and catalytic activity improvement of bio-inorganic functional hybrids. However, characterizing the interfacial molecular details of protein-micro/nanomaterial hybrids remains a great challenge. This protocol describes the lysine reactivity profiling-mass spectrometry strategy for determining which parts of a protein are interacting with the micro/nanomaterials. Lysine residues occur frequently on hydrophilic protein surfaces, and their reactivity is dependent on the accessibility of their amine groups. The accessibility of a lysine residue is lower when it is in contact with another object; allosteric effects resulting from this interaction might reduce or increase the reactivity of remote lysine residues. Lysine reactivity is therefore a useful indicator of protein localization orientation, interaction sequence regions, binding sites and modulated protein structures in the protein-material hybrids. We describe the optimized two-step isotope dimethyl labeling strategy for protein-material hybrids under their native and denaturing conditions in sequence. The comparative quantification results of lysine reactivity are only dependent on the native microenvironments of lysine local structures. We also highlight other critical steps including protein digestion, elution from materials, data processing and interfacial structure analysis. The two-step isotope labeling steps need ~5 h, and the whole protocol including digestion, liquid chromatography-tandem mass spectrometry, data processing and structure analysis needs ~3-5 d.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41596-023-00849-0DOI Listing

Publication Analysis

Top Keywords

lysine reactivity
16
lysine
8
reactivity profiling-mass
8
profiling-mass spectrometry
8
lysine residues
8
reactivity dependent
8
protein-material hybrids
8
two-step isotope
8
data processing
8
structure analysis
8

Similar Publications

SNX30 inhibits lung adenocarcinoma cell proliferation and induces cell ferroptosis through regulating SETDB1.

J Cardiothorac Surg

January 2025

Department of Respiratory and Critical Care Medicine, Datian County General Hospital, 180 Xueshan North Road, Datian County, 366100, China.

Background: Lung adenocarcinoma is the most common form of lung cancer and one of the most life-threatening malignant tumors. Ferroptosis is an iron-dependent regulatory cell death pathway that is crucial for tumor growth. SNX30 is a key regulatory factor in cardiac development; however, its regulatory mechanism and role in inducing ferroptosis in lung adenocarcinoma remain unclear.

View Article and Find Full Text PDF

Targeted covalent inhibitors (TCIs) play an essential role in the fields of kinase research and drug discovery. Most existing TCIs are however cysteine- or lysine-reactive, thus severely limiting their potential applications. New types of TCIs capable of covalently targeting other nucleophilic amino acids that are readily available in proteins are urgently needed.

View Article and Find Full Text PDF

The "a" determinant, a highly conformational region within the hepatitis B virus large surface protein (LHBs), is crucial for antibody neutralization and diagnostic assays. Mutations in this area can lead to conformational changes, resulting in vaccination failure, diagnostic evasion, and disease progression. The "a" determinant of LHBs contains a conserved N-linked glycosylation site at N320, but the mechanisms of glycosylation in LHBs remain unclear.

View Article and Find Full Text PDF

Protein-RNA interactions play important biological roles and hence reactive RNA probes for cross-linking with proteins are important tools in their identification and study. To this end, we designed and synthesized 5'-O-triphosphates bearing a reactive squaramate group attached to position 5 of cytidine or position 7 of 7-deazaadenosine and used them as substrates for polymerase synthesis of modified RNA. In vitro transcription with T7 RNA polymerase or primer extension using TGK polymerase was used for synthesis of squaramate-modified RNA probes which underwent covalent bioconjugations with amine-linked fluorophore and lysine-containing peptides and proteins including several viral RNA polymerases or HIV reverse transcriptase.

View Article and Find Full Text PDF

Purpose: Myocardial ischemia/reperfusion injury (MIRI) is closely associated with ferroptosis. Dexmedetomidine (Dex) has good therapeutic effects on MIRI. This study investigates whether dexmedetomidine (Dex) regulates ferroptosis during MIRI by affecting ferroportin1 (FPN) levels and elucidates the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!