Analysis of 3D medical imaging data has been a large topic of focus in the area of Machine Learning/Artificial Intelligence, though little work has been done in algorithmic (particularly unsupervised) analysis of neonatal brain MRI's. A myriad of conditions can manifest at an early age, including neonatal encephalopathy (NE), which can result in lifelong physical consequences. As such, there is a dire need for better biomarkers of NE and other conditions. The objective of the study is to improve identification of anomalies and prognostication of neonatal MRI brain scans. We introduce a framework designed to support the analysis and assessment of neonatal MRI brain scans, the results of which can be used as an aid to neuroradiologists. We explored the efficacy of the framework through iterations of several deep convolutional Autoencoder (AE) unsupervised modeling architectures designed to learn normalcy of the neonatal brain structure. We tested this framework on the developing human connectome project (dHCP) dataset with 97 patients that were previously categorized by severity. Our framework demonstrated the model's ability to identify and distinguish subtle morphological signatures present in brain structures. Normal and abnormal neonatal brain scans can be distinguished with reasonable accuracy, correctly categorizing them in up to 83% of cases. Most critically, new brain anomalies originally missed during the radiological reading were identified and corroborated by a neuroradiologist. This framework and our modeling approach demonstrate an ability to improve prognostication of neonatal brain conditions and are able to localize new anomalies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352269PMC
http://dx.doi.org/10.1038/s41598-023-38430-0DOI Listing

Publication Analysis

Top Keywords

brain scans
16
neonatal brain
16
neonatal mri
12
mri brain
12
brain
9
neonatal
8
prognostication neonatal
8
framework
5
unsupervised abnormality
4
abnormality detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!