Revealing broken valley symmetry of quantum emitters in WSe with chiral nanocavities.

Nat Commun

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China.

Published: July 2023

Single photon emission of quantum emitters (QEs) carrying internal degrees of freedom such as spin and angular momentum plays an important role in quantum optics. Recently, QEs in two-dimensional semiconductors have attracted great interest as promising quantum light sources. However, whether those QEs are characterized by the same valley physics as delocalized valley excitons is still under debate. Moreover, the potential applications of such QEs still need to be explored. Here we show experimental evidence of valley symmetry breaking for neutral QEs in WSe monolayer by interacting with chiral plasmonic nanocavities. The anomalous magneto-optical behaviour of the coupled QEs suggests that the polarization state of emitted photon is modulated by the chiral nanocavity instead of the valley-dependent optical selection rules. Calculations of cavity quantum electrodynamics further show the absence of intrinsic valley polarization. The cavity-dependent circularly polarized single-photon output also offers a strategy for future applications in chiral quantum optics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352360PMC
http://dx.doi.org/10.1038/s41467-023-39972-7DOI Listing

Publication Analysis

Top Keywords

valley symmetry
8
quantum emitters
8
quantum optics
8
quantum
6
qes
6
valley
5
revealing broken
4
broken valley
4
symmetry quantum
4
emitters wse
4

Similar Publications

Composite materials play a crucial role in various industries, including aerospace, automotive, and shipbuilding. These materials differ from traditional metals due to their high specific strength and low weight, which reduce energy consumption in these industries. The damage behavior of such materials, especially when subjected to stress discontinuities such as central holes, differs significantly from materials without holes.

View Article and Find Full Text PDF

Stereoactive Lone-Pair Manipulation for High Thermoelectric Performance of GeSe-Based Compounds.

ACS Appl Mater Interfaces

January 2025

Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang Demonstration Zone, Xiangyang 441000, China.

Materials with high crystallographic symmetry are supposed to be good thermoelectrics because they have high valley degeneracy () and superb carrier mobility (μ). Binary GeSe crystallizes in a low-symmetry orthorhombic structure accompanying the stereoactive 4s lone pairs of Ge. Herein, we rationally modify GeSe into a high-symmetry rhombohedral structure by alloying with GeTe based on the valence-shell electron-pair repulsion theory.

View Article and Find Full Text PDF

In a complex dynamical system, noise, feedback, and external forces shape behavior that can range from regularity to high-dimensional chaos. Multiple feedback sources can significantly alter its dynamics, potentially even suppressing the system's output. This study investigates the impact of competing feedback sources on a stochastic complex dynamical system using a photonic neuron-a diode laser with external optical feedback.

View Article and Find Full Text PDF

In van der Waals (vdW) architectures of transition metal dichalcogenides (TMDCs), the coupling between interlayer exciton and quantum degrees of freedom opens unprecedented opportunities for excitonic physics. Taking the MoSe homobilayer as representative, we identify that the interlayer registry defines the nature and dynamics of the lowest-energy interlayer exciton. The large layer polarization () is proved, which ensures the formation of layer-resolved interlayer excitons.

View Article and Find Full Text PDF

Flexible Control of Chiral Superconductivity in Optically Driven Nodal Point Superconductors with Antiferromagnetism.

Phys Rev Lett

December 2024

Institute for Structure and Function and Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 400044, People's Republic of China and Center of Quantum Materials and Devices, Chongqing University, Chongqing 400044, People's Republic of China.

Article Synopsis
  • Recent studies focus on creating hybrid systems of magnets and superconductors that exhibit topological superconductivity.
  • The research demonstrates that using Floquet engineering with antiferromagnetic layers and s-wave superconductors can induce chiral topological superconductivity through light interaction that disrupts time-reversal symmetry.
  • The ability to control these topological phases with elliptically polarized light offers a novel way to manipulate superconducting properties through related changes in valley pairs, making this approach promising for experimental exploration.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!