Background And Objectives: Virtual reality has been proved indispensable in computer-assisted surgery, especially for surgical planning, and simulation systems. Collision detection is an essential part of surgery simulators and its accuracy and computational efficiency play a decisive role in the fidelity of simulations. Nevertheless, current collision detection methods in surgical simulation and planning struggle to meet precise requirements, especially for detailed and complex physiological structures. To address this, the primary objective of this study was to develop a new algorithm that enables fast and precise collision detection to facilitate the improvement of the realism of virtual reality surgical procedures.
Methods: The method consists of two main parts, bounding spheres formation and two-level collision detection. A specified surface subdivision method is devised to reduce the radius of basic bounding spheres formed by circumcenters of underlying triangles. The spheres are then clustered and adjusted to obtain a compact personalized hierarchy whose position is updated in real time during surgical simulation, followed by two-level collision detection. Triangular facets with collision potential through interaction between hierarchies and then accurate results are obtained by means of precise detection phase. The effectiveness of the algorithm was evaluated in various models and surgical scenarios and was compared with prior relevant implementations.
Results: Results on multiple models demonstrated that the method can generate a personalized hierarchy with fewer and smaller bounding spheres for tight wrapping. Simulation experiments proved that the proposed approach is significantly superior to comparable methods under the premise of error-free detection, even for severe model-model collision.
Conclusions: The algorithm proposed through this study enables higher numerical efficiency and detection accuracy, which is capable of significantly enlarging the fidelity/realism of haptic simulators and surgical planning methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2023.107707 | DOI Listing |
J Phys Chem A
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
Atomically precise nanoclusters (NCs) are promising building blocks for designing materials and interfaces with unique properties. By incorporating heteroatoms into the core, the electronic and magnetic properties of NCs can be precisely tuned. To accurately predict these properties, density functional theory (DFT) is often employed, making the rigorous benchmarking of DFT results particularly important.
View Article and Find Full Text PDFAnal Chem
January 2025
Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
Developing ambient ionization methods for direct mass spectrometry (MS) analysis is crucial for achieving sample-to-answer capabilities, especially for rapid analysis and monitoring in specific scenarios. Herein, a compact device is presented that utilizes mesh-collision microtube plasma (MC-μTP) ionization for direct online MS analysis. This device features a self-aspirating design that enables the direct analysis of various sample types.
View Article and Find Full Text PDFACS Omega
January 2025
Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Institute of Clinical Mass Spectrometry Applied Research Center, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
Water-soluble vitamins play essential roles in normal body functions and metabolic activities. However, few methods have simultaneously measured all nine water-soluble vitamins in biological matrices. In this study, we developed a sensitive and accurate method for the simultaneous measurement of thiamine (B1), riboflavin (B2), nicotinamide (B3), pantothenic acid (B5), 4-pyridoxic acid (B6), biotin (B7), 5-methyltetrahydrofolic acid (B9), ascorbic acid (VC), and methylmalonic acid (MMA) in human serum.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
Key Laboratory of Forensic Medicine, Ministry of Justice, Shanghai Forensic Service Platform, Shanghai Key Laboratory of Forensic Science, Academy of Forensic Science, Guangfu West Road 1347, Shanghai 200063, China. Electronic address:
Etomidate and its structural analogues, which have anesthetic effects, are classified as controlled psychotropic drugs. Electronic cigarettes (e-cigarettes) have become more and more popular. With the increase of adding etomidate and its analogues to electronic liquids (e-liquids), there is a trend of abuse, which is a tough problem urgently need to be solved.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, 121 Oyster Point Blvd, South San Francisco, California 94080, United States.
Antibody-drug conjugates (ADCs) are a promising drug modality substantially expanding in both the discovery space and clinical development. Assessing the biotransformation of ADCs and is important in understanding their stability and pharmacokinetic properties. We previously reported biotransformation pathways for the anti-B7H4 topoisomerase I inhibitor ADC, AZD8205, puxitatug samrotecan, that underpin its structural stability using an intact protein liquid chromatography-high resolution mass spectrometry (LC-HRMS) approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!