A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

LMPhosSite: A Deep Learning-Based Approach for General Protein Phosphorylation Site Prediction Using Embeddings from the Local Window Sequence and Pretrained Protein Language Model. | LitMetric

Phosphorylation is one of the most important post-translational modifications and plays a pivotal role in various cellular processes. Although there exist several computational tools to predict phosphorylation sites, existing tools have not yet harnessed the knowledge distilled by pretrained protein language models. Herein, we present a novel deep learning-based approach called LMPhosSite for the general phosphorylation site prediction that integrates embeddings from the local window sequence and the contextualized embedding obtained using global (overall) protein sequence from a pretrained protein language model to improve the prediction performance. Thus, the LMPhosSite consists of two base-models: one for capturing effective local representation and the other for capturing global per-residue contextualized embedding from a pretrained protein language model. The output of these base-models is integrated using a score-level fusion approach. LMPhosSite achieves a precision, recall, Matthew's correlation coefficient, and F1-score of 38.78%, 67.12%, 0.390, and 49.15%, for the combined serine and threonine independent test data set and 34.90%, 62.03%, 0.298, and 44.67%, respectively, for the tyrosine independent test data set, which is better than the compared approaches. These results demonstrate that LMPhosSite is a robust computational tool for the prediction of the general phosphorylation sites in proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.2c00667DOI Listing

Publication Analysis

Top Keywords

pretrained protein
16
protein language
16
language model
12
deep learning-based
8
learning-based approach
8
phosphorylation site
8
site prediction
8
embeddings local
8
local window
8
window sequence
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!