Point-of-care testing (POCT), with its portability and high sensitivity, is an analytical device for rapid on-site sensing and detection. In this study, a POCT device was designed for the portable detection of illegal additives by integrating a coil device that can visually sense color distance and a two-electrode electrochemical system. Real-time monitoring of pressure changes was achieved by driving CeO@Pt/Au nanoparticle (NP)-labeled antibodies into a competitive immunoreaction, in which CeO and Pt/Au synergistically catalyzed the production of large amounts of O from HO, leading to a significant increase in gas within the closed chamber. Attractively, the coil device converted the pressure stimulus into visually readable change in distance for semi-quantitative detection of the target substance, while the electrical signal output caused by the changes of the solution around the electrodes achieved accurate and reliable quantification of the target. In addition, the proposed dual-mode pressure immunoassay device has acceptable selectivity, stability, and reproducibility. Herein, this portable device, which enables target concentration readings by converting pressure into multiple signals, provides an effective way to visualize POCT assays in resource-limited areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.3c01547 | DOI Listing |
J Neurointerv Surg
January 2025
Department of Neurosurgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
Background: Early literature on the Woven EndoBridge (WEB) device reported 80-90% adequate aneurysm occlusion but low complete occlusion (40-55%). It is uncertain whether residual or recurrent aneurysms require re-treatment to prevent future rupture.
Objective: To systematically review the literature to meta-analyze occlusion and complication rates after re-treatment of these aneurysms.
J Neural Eng
January 2025
Huazhong University of Science and Technology Wuhan National High Magnetic Field Center, No.1037, Luoyu Road, Wuhan, Hubei, 430074, CHINA.
Objective: Pulse parameter controllable transcranial magnetic stimulation (cTMS) devices with fully-controlled semiconductor switches are increasingly being developed, but the primary waveform they generate is often accompanied by ringing, which is due to the resonance between the stimulation coil inductance and the snubber capacitors paired with the switches at the end of the pulse. This study provides a ringing suppression design method to effectively suppress it and reduce its impact on stimulation efficacy.
Methods: A three-pronged design method is developed to suppress the ringing at its source.
Mechanical forces are critical for virtually all fundamental biological processes, yet quantification of mechanical forces at the molecular scale remains challenging. Here, we present a new strategy using calibrated coiled-coils as genetically encoded, compact, tunable, and modular mechano-sensors to substantially simplify force measurement , via diverse readouts (luminescence, fluorescence and analytical biochemistry) and instrumentation readily available in biology labs. We demonstrate the broad applicability and ease-of-use of these coiled-coil mechano-sensors by measuring forces during cytokinesis (formin Cdc12) and endocytosis (epsin Ent1) in yeast, force distributions in nematode axons (β-spectrin UNC-70), and forces transmitted to the nucleus (mini-nesprin-2G) and within focal adhesions (vinculin) in mammalian cells.
View Article and Find Full Text PDFJ Oral Biol Craniofac Res
January 2025
Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Indonesia.
Background: Retention is an essential element of orthodontic treatment. In the past two decades, numerous biological treatments have been developed to alleviate orthodontic relapse. Pharmacologic bone modulation is a viable approach to mitigate relapse.
View Article and Find Full Text PDFBrain Stimul
January 2025
State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 102206, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!