Several models have been developed to investigate angiogenesis in vivo. However, most of these models are complex and expensive, require specialized equipment, or are hard to perform for subsequent quantitative analysis. Here we present a modified matrix gel plug assay to evaluate angiogenesis in vivo. In this protocol, vascular cells were mixed with matrix gel in the presence or absence of pro-angiogenic or anti-angiogenic reagents, and then subcutaneously injected into the back of recipient mice. After 7 days, phosphate buffer saline containing dextran-FITC is injected via the tail vein and circulated in vessels for 30 min. Matrix gel plugs are collected and embedded with tissue embedding gel, then 12 µm sections are cut for fluorescence detection without staining. In this assay, dextran-FITC with high molecular weight (~150,000 Da) can be used to indicate functional vessels for detecting their length, while dextran-FITC with low molecular weight (~4,400 Da) can be used to indicate the permeability of neo-vessels. In conclusion, this protocol can provide a reliable and convenient method for the quantitative study of angiogenesis in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/65567 | DOI Listing |
Tissue Cell
January 2025
Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia. Electronic address:
The extracellular matrix (ECM) and its primary chemical components, including collagen, play a pivotal role in carcinogenesis and tumor progression. The ECM actively regulates cell proliferation, migration, and, importantly, resistance to various adverse factors. It is widely recognized as a key factor in modifying the resistance of tumor cells to various treatment modalities and cytotoxic compounds.
View Article and Find Full Text PDFNat Protoc
January 2025
Advanced Research Support Center, Ehime University, Ehime, Japan.
Top-down analysis of intact proteins and middle-down analysis of proteins subjected to limited digestion require efficient detection of traces of proteoforms in samples, necessitating the reduction of sample complexity by thorough pre-fractionation of the proteome components in the sample. SDS-PAGE is a simple and inexpensive high-resolution protein-separation technique widely used in biochemical and molecular biology experiments. Although its effectiveness for sample preparation in bottom-up proteomics has been proven, establishing a method for highly efficient recovery of intact proteins from the gel matrix has long been a challenge for its implementation in top-down and middle-down proteomics.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
Clinical Pharmacology Consultant in Aesthetic Medicine, Milan, Italy.
Background: Postsurgical atrophic scars tend to respond poorly to treatments, especially non-energy-based ones. Hydrophilic PN HPT (Polynucleotides High Purification Technology) injected intradermally is a non-energy-based option with an immediate volume-enhancing effect that indirectly improves the fibroblast synthesis of collagen and extracellular matrix. The PN HPT ingredient has the further benefit of a dermal "priming" effect that enhances the efficacy of other scar treatments.
View Article and Find Full Text PDFMater Today Bio
February 2025
Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, China.
Immunotherapy is a cornerstone in cancer treatment, celebrated for its precision, ability to eliminate residual cancer cells, and potential to avert tumor recurrence. Nonetheless, its effectiveness is frequently undermined by the immunosuppressive milieu created by tumors. This study presents a novel nanogel-based drug delivery system, DOX-4PI@CpG@Lipo@Gel (DPCLG), engineered to respond to Matrix Metallopeptidase-2 (MMP-2)-a protease abundant in the tumor microenvironment (TME).
View Article and Find Full Text PDFMikrochim Acta
January 2025
Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
A point-of-care testing (POCT) assay based on commercial HCG strip was proposed for miRNA21 detection by integrating RCA-HCR cascaded isothermal amplification with CRISPR/Cas12a. Three modules were integrated in the proposed platform: target amplification module composed of rolling circle amplification (RCA) cascaded with hybridization chain reaction (HCR), signal transduction module composed of CRISPR/Cas12a combined with HCG-agarose gel beads probes, and signal readout module composed of commercial HCG strips. The proposed RCA-HCR-CRISPR/Cas12a-HCG strip assay for miRNA21 detection had high sensitivity, and the limit of detection was as low as 37 fM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!