AI Article Synopsis

  • Researchers developed a humanized mouse model incorporating the human TOMM40 and APOE genes, complete with their regulatory sequences, to study late-onset Alzheimer's disease and other age-related conditions.
  • The scientists employed recombineering technologies to replace the mouse gene regions with human ones, measuring gene expression in brain, liver, and spleen tissues using advanced mRNA assays.
  • Their findings highlighted how factors like the '523' polyT genotype, age, and sex affect the expression of TOMM40 and APOE genes, indicating potential for new studies in drug discovery related to these genes and their implications for adult health.

Article Abstract

Background: The human chromosome 19q13.32 is a gene rich region and has been associated with multiple phenotypes, including late onset Alzheimer's disease (LOAD) and other age-related conditions.

Objective: Here we developed the first humanized mouse model that contains the entire TOMM40 and APOE genes with all intronic and intergenic sequences including the upstream and downstream regions. Thus, the mouse model carries the human TOMM40 and APOE genes and their intact regulatory sequences.

Methods: We generated the APOE-TOMM40 humanized mouse model in which the entire mouse region was replaced with the human (h)APOE-TOMM40 loci including their upstream and downstream flanking regulatory sequences using recombineering technologies. We then measured the expression of the human TOMM40 and APOE genes in the mice brain, liver, and spleen tissues using TaqMan based mRNA expression assays.

Results: We investigated the effects of the '523' polyT genotype (S/S or VL/VL), sex, and age on the human TOMM40- and APOE-mRNAs expression levels using our new humanized mouse model. The analysis revealed tissue specific and shared effects of the '523' polyT genotype, sex, and age on the regulation of the human TOMM40 and APOE genes. Noteworthy, the regulatory effect of the '523' polyT genotype was observed for all studied organs.

Conclusion: The model offers new opportunities for basic science, translational, and preclinical drug discovery studies focused on the APOE genomic region in relation to LOAD and other conditions in adulthood.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10733864PMC
http://dx.doi.org/10.3233/JAD-230451DOI Listing

Publication Analysis

Top Keywords

mouse model
20
humanized mouse
16
tomm40 apoe
16
apoe genes
16
human tomm40
12
'523' polyt
12
polyt genotype
12
apoe-tomm40 humanized
8
model entire
8
including upstream
8

Similar Publications

Cigarette smoke extract (CSE)-induced airway mucus hypersecretion and inflammation are prominent features of chronic obstructive pulmonary disease (COPD). As a factor associated with inflammation regulation, T cell immunoglobulin and mucin domain-1 (TIM-1) is found to be involved in various inflammatory disorders such as asthma and COPD. In this study, the GEO database provides two human COPD gene expression datasets (GSE67472, n = 62) along with the relevant controls (n = 43) for differentially expressed gene (DEG) analyses.

View Article and Find Full Text PDF

The trajectory of crime: Integrating mouse-tracking into concealed memory detection.

Behav Res Methods

January 2025

Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, 999078, Macau, China.

The autobiographical implicit association test (aIAT) is an approach of memory detection that can be used to identify true autobiographical memories. This study incorporates mouse-tracking (MT) into aIAT, which offers a more robust technique of memory detection. Participants were assigned to mock crime and then performed the aIAT with MT.

View Article and Find Full Text PDF

Targeted editing of CCL5 with CRISPR-Cas9 nanoparticles enhances breast cancer immunotherapy.

Apoptosis

January 2025

Department of Breast Cancer Surgery, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, Jiangxi, 330029, China.

Breast cancer remains one of the leading causes of cancer-related mortality among women worldwide. Immunotherapy, a promising therapeutic approach, often faces challenges due to the immunosuppressive tumor microenvironment. This study explores the innovative use of CRISPR-Cas9 technology in conjunction with FCPCV nanoparticles to target and edit the C-C Motif Chemokine Ligand 5 (CCL5) gene, aiming to improve the efficacy of breast cancer immunotherapy.

View Article and Find Full Text PDF

HIFU induces reprogramming of the tumor immune microenvironment in a pancreatic cancer mouse model.

Med Mol Morphol

January 2025

Faculty of Advanced Techno-Surgery (FATS), Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku, Tokyo, 162-8666, Japan.

This study evaluates the effects of different high-intensity focused ultrasound irradiation (HIFU) methods on local tumor suppression and systemic antitumor effects, including the abscopal effect, in a mouse model of pancreatic cancer. To ascertain the efficacy of the treatment, pancreatic cancer cells were injected into the thighs of mice and HIFU was applied on one side using continuous waves or trigger pulse waves. Then, tumor volume, tissue changes, and immune marker levels were analyzed.

View Article and Find Full Text PDF

Background: Osteosarcoma is the most common malignant bone tumour with limited treatment options and poor outcomes in advanced metastatic cases. Current immunotherapies show limited efficacy, highlighting the need for novel therapeutic approaches. Systemic immune activation by Toll-like receptor 4 (TLR4) immunostimulants has shown great promise; however, current TLR4 agonists' toxicity hinders this systemic approach in patients with osteosarcoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!