Recent studies of automatic diagnosis of vertebral compression fractures (VCFs) using deep learning mainly focus on segmentation and vertebral level detection in lumbar spine lateral radiographs (LSLRs). Herein, we developed a model for simultaneous VCF diagnosis and vertebral level detection without using adjacent vertebral bodies. In total, 1102 patients with VCF, 1171 controls were enrolled. The 1865, 208, and 198 LSLRS were divided into training, validation, and test dataset. A ground truth label with a 4-point trapezoidal shape was made based on radiological reports showing normal or VCF at some vertebral level. We applied a modified U-Net architecture, in which decoders were trained to detect VCF and vertebral levels, sharing the same encoder. The multi-task model was significantly better than the single-task model in sensitivity and area under the receiver operating characteristic curve. In the internal dataset, the accuracy, sensitivity, and specificity of fracture detection per patient or vertebral body were 0.929, 0.944, and 0.917 or 0.947, 0.628, and 0.977, respectively. In external validation, those of fracture detection per patient or vertebral body were 0.713, 0.979, and 0.447 or 0.828, 0.936, and 0.820, respectively. The success rates were 96 % and 94 % for vertebral level detection in internal and external validation, respectively. The multi-task-shared encoder was significantly better than the single-task encoder. Furthermore, both fracture and vertebral level detection was good in internal and external validation. Our deep learning model may help radiologists perform real-life medical examinations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10345217 | PMC |
http://dx.doi.org/10.1016/j.csbj.2023.06.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!