Introduction: Developing approaches for early detection of possible risk clusters for mental health problems among undergraduate university students is warranted to reduce the duration of untreated illness (DUI). However, little is known about indicators of need for care by others. Herein, we aimed to clarify the specific value of study engagement and lifestyle habit variables in predicting potentially high-risk cluster of mental health problems among undergraduate university students.
Methods: This cross-sectional study used a web-based demographic questionnaire [the Utrecht Work Engagement Scale for Students (UWES-S-J)] as study engagement scale. Moreover, information regarding life habits such as sleep duration and meal frequency, along with mental health problems such as depression and fatigue were also collected. Students with both mental health problems were classified as high risk. Characteristics of students in the two groups were compared. Univariate logistic regression was performed to identify predictors of membership. Receiver Operating Characteristic (ROC) curve was used to clarify the specific values that differentiated the groups in terms of significant predictors in univariate logistic analysis. Cut-off point was calculated using Youden index. Statistical significance was set at < 0.05.
Results: A total of 1,644 students were assessed, and 30.1% were classified as high-risk for mental health problems. Significant differences were found between the two groups in terms of sex, age, study engagement, weekday sleep duration, and meal frequency. In the ROC curve, students who had lower study engagement with UWES-S-J score < 37.5 points (sensitivity, 81.5%; specificity, 38.0%), <6 h sleep duration on weekdays (sensitivity, 82.0%; specificity, 24.0%), and < 2.5 times of meals per day (sensitivity, 73.3%; specificity, 35.8%), were more likely to be classified into the high-risk group for mental health problems.
Conclusion: Academic staff should detect students who meet these criteria at the earliest and provide mental health support to reduce DUI among undergraduate university students.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338915 | PMC |
http://dx.doi.org/10.3389/fpsyt.2023.1184156 | DOI Listing |
Brain
January 2025
Translational Neuroimaging Laboratory, Montreal Neurological Institute, H3A 2B4, Montreal, Canada.
Plasma phosphorylated tau biomarkers open unprecedented opportunities for identifying carriers of Alzheimer's disease pathophysiology in early disease stages using minimally invasive techniques. Plasma p-tau biomarkers are believed to reflect tau phosphorylation and secretion. However, it remains unclear to what extent the magnitude of plasma p-tau abnormalities reflects neuronal network disturbance in the form of cognitive impairment.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
Data and Web Science Group, School of Business Informatics and Mathematics, University of Manneim, Mannheim, Germany.
Background: The rapid evolution of large language models (LLMs), such as Bidirectional Encoder Representations from Transformers (BERT; Google) and GPT (OpenAI), has introduced significant advancements in natural language processing. These models are increasingly integrated into various applications, including mental health support. However, the credibility of LLMs in providing reliable and explainable mental health information and support remains underexplored.
View Article and Find Full Text PDFJMIR Ment Health
January 2025
Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
Background: Mental health concerns have become increasingly prevalent; however, care remains inaccessible to many. While digital mental health interventions offer a promising solution, self-help and even coached apps have not fully addressed the challenge. There is now a growing interest in hybrid, or blended, care approaches that use apps as tools to augment, rather than to entirely guide, care.
View Article and Find Full Text PDFJMIR Form Res
January 2025
School of Psychology, Ulster University, Coleraine, United Kingdom.
Background: Psychologists have developed frameworks to understand many constructs, which have subsequently informed the design of digital mental health interventions (DMHIs) aimed at improving mental health outcomes. The science of happiness is one such domain that holds significant applied importance due to its links to well-being and evidence that happiness can be cultivated through interventions. However, as with many constructs, the unique ways in which individuals experience happiness present major challenges for designing personalized DMHIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!