Objectives: The dynamics of the memory B cell (MBC) repertoire after SARS-CoV-2 vaccination is crucial for assessing long-term immunity. We compare spike-specific MBC responses between SARS-CoV-2 unexposed and recovered individuals, and their impact on breakthrough infections during follow-up.

Methods: Spike-specific MBC and T cells were quantified at inclusion and after two doses of mRNA vaccine in a longitudinal cohort of 85 naïve and 64 recovered participants (47 with positive serology and 17 with negative serology after infection).

Results: At inclusion, there was minimal spike-specific MBC in naïve SARS-CoV-2 individuals. After the second vaccine dose, MBCs were significantly boosted in naïve individuals, but reached a significantly lower level than that observed even in unvaccinated SARS-CoV-2 convalescents (p<0.001). Furthermore, while the secondary memory B cell (MBC) population consisted of 100%, 33%, and 76% IgG, IgM, and IgA expressing cells, respectively, in the unexposed group, the MBC response showed a significant decrease across all isotypes. Similarly, although secondary specific IgG, IgM, and IgA-MBC isotypes were found in 100%, 39%, and 76% of the unexposed participants, respectively, the magnitude of the MBC levels was significantly lower for all the isotypes compared to convalescents. Interestingly, convalescents without an initial serological response had a lower MBC response, like what found in unexposed subjects. There was an inverse correlation between specific MBCs (r=-0.307; p=0.027), especially for isotype IgA (r=-0.279, p=0.045), and the time since the second vaccination dose. Furthermore, during a median follow-up of 434 days (IQR, 339-495), 49 out of 149 individuals (33%) became infected, 29 in naïve and 20 in convalescent individuals, showing a significant correlation between spike-specific MBC magnitude after vaccination and the time for SARS-CoV-2 infection, especially for IgA/IgG MBC isotypes.

Conclusions: MBCs were primed by mRNA-based vaccination in most cases, but SARS-CoV-2 naïve individuals had a blunted specific MBC response, and this was associated with a shorter time to breakthrough SARS-CoV-2 infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338867PMC
http://dx.doi.org/10.3389/fimmu.2023.1127379DOI Listing

Publication Analysis

Top Keywords

spike-specific mbc
12
memory cell
8
mrna-based sars-cov-2
4
sars-cov-2 comirnaty
4
comirnaty vaccine
4
vaccine elicits
4
elicits weak
4
weak short
4
short specific
4
specific memory
4

Similar Publications

Bivalent Omicron BA.1 vaccine booster increases memory B cell breadth and neutralising antibodies against emerging SARS-CoV-2 variants.

EBioMedicine

December 2024

Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia; Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia. Electronic address:

Background: Current literature informs us that bivalent vaccines will generate a broader serum neutralizing antibody response to multiple SARS-CoV-2 variants, but studies on how this breadth relates to the memory B cell (MBC) and T cell responses are sparse. This study compared breadth of neutralising antibody, and memory B and T cell responses to monovalent or a bivalent ancestral/Omicron BA.1 COVID-19 booster vaccine.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the immune responses of healthy children aged 5-12 who received the BNT162b2 COVID-19 vaccine, focusing on antibodies, memory B cells, and T cells over a year.
  • Results showed that children had strong immune responses, with higher antibody and T cell levels than adults six months post-vaccination, although a third booster dose mainly increased antibody levels.
  • The findings indicate that sustained immune protection in children may rely more on T cells and memory cells rather than just neutralizing antibodies, suggesting no significant added benefit from booster doses for healthy children.
View Article and Find Full Text PDF

COVID-19 induces re-circulating long-lived memory B cells (MBC) that, upon re-encounter with the pathogen, are induced to mount immunoglobulin responses. During convalescence, antibodies are subjected to affinity maturation, which enhances the antibody binding strength and generates new specificities that neutralize virus variants. Here, we performed a single-cell RNA sequencing analysis of spike-specific B cells from a SARS-CoV-2 convalescent subject.

View Article and Find Full Text PDF

Objectives: The dynamics of the memory B cell (MBC) repertoire after SARS-CoV-2 vaccination is crucial for assessing long-term immunity. We compare spike-specific MBC responses between SARS-CoV-2 unexposed and recovered individuals, and their impact on breakthrough infections during follow-up.

Methods: Spike-specific MBC and T cells were quantified at inclusion and after two doses of mRNA vaccine in a longitudinal cohort of 85 naïve and 64 recovered participants (47 with positive serology and 17 with negative serology after infection).

View Article and Find Full Text PDF

Objective: T-cell responses against SARS-CoV-2 are observed in unexposed individuals, attributed to previous common human coronavirus (HCoV) infections. We evaluated the evolution of this T-cell cross-reactive response and the specific memory B-cells (MBCs) after the SARS-CoV-2 mRNA-based vaccination and its impact on incident SARS-CoV-2 infections.

Methods: This was a longitudinal study of 149 healthcare workers (HCWs) that included 85 unexposed individuals that were subdivided according to previous T-cell cross-reactivity, who were compared to 64 convalescent HCWs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!