AI Article Synopsis

  • * This study involved synthesizing cocrystals of benzoic acid coformers and dipyridyl-2,2'-bithiophene to explore how the identity of the coformer and the placement of pyridine N atoms influence their solid-state properties.
  • * Results showed that the 5-(3-pyridyl)-5'-(4-pyridyl)-isomer had stronger interactions in certain positions, leading to reduced crystallite sizes, while some cocrystals demonstrated relatively large intermolecular electronic couplings based on density functional theory (DFT

Article Abstract

To improve the charge-carrier transport capabilities of thin-film organic materials, the intermolecular electronic couplings in the material should be maximized. Decreasing intermolecular distance while maintaining proper orbital overlap in highly conjugated aromatic molecules has so far been a successful way to increase electronic coupling. We attempted to decrease the intermolecular distance in this study by synthesizing cocrystals of simple benzoic acid coformers and dipyridyl-2,2'-bithiophene molecules to understand how the coformer identity and pyridine N atom placement affected solid-state properties. We found that with the 5-(3-pyridyl)-5'-(4-pyridyl)-isomer, the 4-pyridyl ring interacted with electrophiles and protons more strongly. Synthesized cocrystal powders were found to have reduced average crystallite size in reference to the parent compounds. The opposite was found for the intermolecular electronic couplings, as determined via density functional theory (DFT) calculations, which were relatively large in some of the cocrystals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339323PMC
http://dx.doi.org/10.1021/acsomega.3c02423DOI Listing

Publication Analysis

Top Keywords

intermolecular electronic
8
electronic couplings
8
intermolecular distance
8
hydrogen-bonding trends
4
trends bithiophene
4
bithiophene and/or
4
and/or 4-pyridyl
4
4-pyridyl substituents
4
substituents improve
4
improve charge-carrier
4

Similar Publications

Effect of different surface treatments on PEEK-enamel bonds: Bonding durability and mechanism.

J Prosthet Dent

December 2024

Assistant Professor, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics,School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China. Electronic address:

Statement Of Problem: Polyetheretherketone (PEEK) has been used in clinical dentistry because of its excellent physical and biological properties. However, achieving an effective and durable bond with enamel is challenging because of its chemical inertness and low surface energy, and data on the effects of different surface treatments on the durability of PEEK-enamel bonds are scarce.

Purpose: The purpose of this in vitro study was to investigate airborne-particle abrasion, sulfuric acid etching, and the combined use of these treatments on the bonding durability of PEEK-enamel bonds and to gain a deeper understanding of their bonding mechanism.

View Article and Find Full Text PDF

Two octa-coordinated lanthanum (III) complexes of deprotonated azaphosphor β-diketon and diimine ligands, [LnLQ] (L = [ClCHC(O)NP(O)(NCH)], Q = Phen (C1) and Bipy (C2)), were synthesized and characterized by elemental analysis, IR, and NMR spectra. X-ray crystallography revealed a distorted tetragonal antiprism LaO6N2 coordination geometry around the lanthanum atom in both compounds. Nano-sized complexes (Ć1 and Ć2) were synthesized via a sonochemical process and analyzed using SEM and XRPD.

View Article and Find Full Text PDF

Butylcholinesterase (BChE) is a key enzyme in living system, closely related to liver and neurological diseases. It is very challenge to develop near-infrared (NIR) fluorescence probe methods for highly selective and sensitive detection of BChE in vivo. Based on the differences in active sites and spatial pockets between acetylcholinesterase (AChE) and BChE, a new NIR BChE-responsive fluorescence probe Probe-BChE (λ/λ = 600 nm/676 nm) was designed and synthesized by introducing dimethyl carbamate group as recognizing moiety to a NIR fluorophore hemicyanine skeleton.

View Article and Find Full Text PDF

A correlation of polymorphic G-quadruplex formation in vitro and in the lysosomes of live cancer cells.

Int J Biol Macromol

December 2024

Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan; Institute of Biophotonics, National Yang Ming Chao Tung University, Taipei 11221, Taiwan; Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan; College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan. Electronic address:

Guanine-rich oligonucleotides (GROs) can fold into G-quadruplex (G4) structures. The diverse roles of G4 structures, particularly as targets for drug design, anticancer agents, and drug delivery systems, highlight their critical significance in cancer research. However, the formation of G4 structures is highly dependent on the specific nucleotide sequences and the number of G-tracts within each GRO.

View Article and Find Full Text PDF

Asymmetrically PEGylated and amphipathic heptamethine indocyanine dyes potentiate radiotherapy of renal cell carcinoma via mitochondrial targeting.

J Nanobiotechnology

December 2024

Institute of Combined Injury, National Key Laboratory of Trauma and Chemical Poisoning, Army Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.

Enhancing the sensitivity of radiotherapy (RT) towards renal cell carcinoma (RCC) remains a challenge because RCC is a radioresistant tumor. In this work, we design and report asymmetrically Polyethylene Glycol (PEG)ylated and amphipathic heptamethine indocyanine dyes for efficient radiosensitization of RCC treatment. They were synthesized by modifying different lengths of PEG chains as hydrophilic moieties on one N-alkyl chain of a mitochondria-targeting heptamethine indocyanine dye (IR-808), and a radiosensitizer 2-nitroimidazole (NM) as a hydrophobic moiety on another N-alkyl chain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!