Porcine reproductive and respiratory syndrome virus (PRRSV) remains widely distributed across the U.S. swine industry. Between-farm movements of animals and transportation vehicles, along with local transmission are the primary routes by which PRRSV is spread. Given the farm-to-farm proximity in high pig production areas, local transmission is an important pathway in the spread of PRRSV; however, there is limited understanding of the role local transmission plays in the dissemination of PRRSV, specifically, the distance at which there is increased risk for transmission from infected to susceptible farms. We used a spatial and spatiotemporal kernel density approach to estimate PRRSV relative risk and utilized a Bayesian spatiotemporal hierarchical model to assess the effects of environmental variables, between-farm movement data and on-farm biosecurity features on PRRSV outbreaks. The maximum spatial distance calculated through the kernel density approach was 15.3 km in 2018, 17.6 km in 2019, and 18 km in 2020. Spatiotemporal analysis revealed greater variability throughout the study period, with significant differences between the different farm types. We found that downstream farms (i.e., finisher and nursery farms) were located in areas of significant-high relative risk of PRRSV. Factors associated with PRRSV outbreaks were farms with higher number of access points to barns, higher numbers of outgoing movements of pigs, and higher number of days where temperatures were between 4°C and 10°C. Results obtained from this study may be used to guide the reinforcement of biosecurity and surveillance strategies to farms and areas within the distance threshold of PRRSV positive farms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340085 | PMC |
http://dx.doi.org/10.3389/fvets.2023.1158306 | DOI Listing |
J Med Internet Res
January 2025
Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China.
Background: Acute kidney injury (AKI) is a common complication in hospitalized older patients, associated with increased morbidity, mortality, and health care costs. Major adverse kidney events within 30 days (MAKE30), a composite of death, new renal replacement therapy, or persistent renal dysfunction, has been recommended as a patient-centered endpoint for clinical trials involving AKI.
Objective: This study aimed to develop and validate a machine learning-based model to predict MAKE30 in hospitalized older patients with AKI.
JMIR Med Inform
January 2025
Sungkyunkwan University, Seoul, Republic of Korea.
Background: Mental health chatbots have emerged as a promising tool for providing accessible and convenient support to individuals in need. Building on our previous research on digital interventions for loneliness and depression among Korean college students, this study addresses the limitations identified and explores more advanced artificial intelligence-driven solutions.
Objective: This study aimed to develop and evaluate the performance of HoMemeTown Dr.
J Neurosurg Pediatr
January 2025
2Division of Neurosurgery, Children's Hospital Los Angeles, California.
J Neurosurg Spine
January 2025
1Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and.
Objective: Mixed-reality (MR) applications provide opportunities for technical rehearsal, education, and estimation of surgical performance without the risk of patient harm. In this study, the authors provide a structured literature review on the current state of MR applications and their effects on neurosurgery training. They also introduce an MR prototype for neurosurgical spine training.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!