Objectives: Currently, there are no data on sex differences in the power profiles in sprint track cycling. This cross-section study analyses retrospective data of female and male track sprint cyclists for sex differences. We hypothesized that women would exhibit lower peak power to weight than men, as well as demonstrate a different distribution of power durations related to sprint cycling performance.
Design: We used training, testing, and racing data from a publicly available online depository (www.strava.com), for 29 track sprint cyclists (eight women providing 18 datasets, and 21 men providing 54 datasets) to create sex-specific profiles. R was used to describe model quality, and regression indices are used to compare watts per kilogram (W/kg) for each duration for both sexes against a 1:1 relationship expected for 15-s:15-s W/kg.
Results: We confirmed our sample were sprint cyclists, displaying higher peak and competition power than track endurance cyclists. All power profiles showed a high model quality (R ≥ 0.77). Regression indices for both sexes were similar for all durations, suggesting similar peak power and similar relationship between peak power and endurance level for both men and women (rejecting our hypothesis). The value of R for the female sprinters showed greater variation suggesting greater differences within female sprint cyclists.
Conclusion: The main finding shows female sprint cyclists in this study have very similar relationships between peak power and endurance power as men. Higher variation in W/kg for women in this study than men, within these strong relationships, indicates women in this study, had greater inter-athlete variability, and may thus require more personalised training. Future work needs to be performed with larger samples, and at different levels to optimize these recommendations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340095 | PMC |
http://dx.doi.org/10.7717/peerj.15671 | DOI Listing |
Eur J Sport Sci
December 2024
Inland Norway University of Applied Sciences, Section for Health and Exercise Physiology Lillehammer, Lillehammer, Norway.
The purpose of this study was to evaluate the effects of a microcycle of high-intensity interval training (HIT) sessions with multiple short work intervals followed by an active recovery period, compared to a similar duration of regular training, on determinants and indicators of endurance performance in well-trained cyclists. The participants in the BLOCK group performed a 6-day HIT microcycle including five HIT sessions (5 × 8.75-min 30/15 s short intervals) followed by a 6-day active recovery period with reduced training load, while the regular training group (REG) performed 12 days of their regular training, including four HIT sessions.
View Article and Find Full Text PDFInt J Sports Physiol Perform
December 2024
Griffith Sports Science, Griffith University, Gold Coast, QLD, Australia.
Purpose: Identifying the determinants of performance is fundamental to talent identification and individualizing training prescription. Consequently, the aim of this study was to determine whether estimated muscle typology is associated with the key mechanical characteristics of track sprint cycling.
Methods: Sixteen world-class and elite track cyclists (n = 7 female) completed a laboratory session wherein torque-cadence and power-cadence profiles were constructed to determine maximal power output (Pmax), optimal cadence (Fopt), and maximal cadence (Fmax), and fatigue rate per pedal stroke was determined during a 15-second maximal sprint at Fopt.
PLoS One
November 2024
Department of Physiology and Biochemistry, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland.
This study compared the impact of two polarized training programs (POL) on aerobic capacity in well-trained (based on maximal oxygen uptake and training experience) female cyclists. Each 8-week POL program consisted of sprint interval training (SIT) consisting of 8-12 repetitions, each lasting 30 seconds at maximal intensity, high-intensity interval training (HIIT) consisting of 4-6 repetitions, each lasting 4 minutes at an intensity of 90-100% maximal aerobic power, and low-intensity endurance training (LIT) lasting 150-180 minutes with intensity at the first ventilatory threshold. Training sessions were organized into 4-day microcycles (1st day-SIT, 2nd day-HIIT, 3rd day-LIT, and 4th day-active rest), that were repeated throughout the experiment.
View Article and Find Full Text PDFSci Rep
October 2024
School of Strength and Conditioning Training, Beijing Sport University, Beijing, China.
The study aimed to optimise post-activation potentiation (PAP) strategies for Rider 1 in elite team sprints to improve performance over 250 m (opening lap), with a focus on female cyclists. Eight national-level track cyclists participated in this study, undergoing four sets of activation strategies: control (CON), dynamic high inertia (DYN, 4 × 4 pedal strokes), isometric contraction (ISO, 4 × 4 s, 4 angles), and back squat activation (BSQ, 4 × 4 rep, 80%1RM). The tests were divided into pre-activation and post-activation phases, including measurements at 4 min, 8 min, and 12 min after activation.
View Article and Find Full Text PDFEur J Sport Sci
November 2024
Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.
Strong relationships exist between sprint cycling torque and isometric mid-thigh pull (IMTP) force production at one timepoint; however, the relationships between the changes in these measures following a training period are not well understood. Accordingly, this study examined the relationships in the changes of sprint cycling torque and IMTP force following six-weeks of sprint cycling and resistance training performed by strength-trained novice cyclists (n = 14). Cycling power, cadence, torque and IMTP force (Peak force [PF]/torque, average and peak rate of force/torque development [RFD/RTD], and RFD/RTD from 0 to 100 ms and 0-200 ms) were assessed before and after training.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!