https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=37456775&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3745677520230718
1758-3764182023European cardiologyEur CardiolMechanisms of Coronary Artery Spasm.e39e39e3910.15420/ecr.2022.55Recent clinical trials have highlighted that percutaneous coronary intervention in patients with stable angina provides limited additional benefits on top of optimal medical therapy. This has led to much more attention being paid to coronary vasomotion abnormalities regardless of obstructive or non-obstructive arterial segments. Coronary vasomotion is regulated by multiple mechanisms that include the endothelium, vascular smooth muscle cells (VSMCs), myocardial metabolic demand, autonomic nervous system and inflammation. Over the years, several animal models have been developed to explore the central mechanism of coronary artery spasm. This review summarises the landmark studies on the mechanisms of coronary vasospasm demonstrating the central role of Rho-kinase as a molecular switch of VSMC hypercontraction and the important role of coronary adventitial inflammation for Rho-kinase upregulation in VSMCs.Copyright © 2023, Radcliffe Cardiology.NishimiyaKensukeKDepartment of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan.TakahashiJunJDepartment of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan.OyamaKazumaKDepartment of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan.MatsumotoYasuharuYDepartment of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan.YasudaSatoshiSDepartment of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan.ShimokawaHiroakiHDepartment of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan.engJournal ArticleReview20230530
EnglandEur Cardiol1015747801758-3756Coronary artery spasmRho-kinasecoronary adventitiainflammationperivascular adipose tissuevascular smooth muscle cellsDisclosures: HS is on the European Cardiology Review editorial board; this did not influence peer review. All other authors have no conflicts of interest to declare.
2022102920233222023717643202371764220237174282023530epublish37456775PMC1034598410.15420/ecr.2022.55Maron DJ, Hochman JS, Reynolds HR et al. Initial invasive or conservative strategy for stable coronary disease. Am Heart J. 2020;382:1395–407. doi: 10.1056/NEJMoa1915922.10.1056/NEJMoa1915922PMC726383332227755Perera D, Clayton T, O’Kane PD et al. Percutaneous revascularization for ischemic left ventricular dysfunction. Am Heart J. 2022;387:1351–60. doi: 10.1056/NEJMoa2206606.10.1056/NEJMoa220660636027563Canty JM Jr. Bonow RO, Mann DL, Zipes DP, Am Heart J. Philadelphia PA: Saunders; 2012. Coronary blood flow and myocardial ischemia. pp. 1049–75.Lanza GA, Pedrotti P, Pasceri V et al. Autonomic changes associated with spontaneous coronary spasm in patients with variant angina. Am Heart J. 1996;28:1249–56. doi: 10.1016/S0735-1097(96)00309-9.10.1016/S0735-1097(96)00309-98890823Li J, Zhang H, Zhang C. Role of inflammation in the regulation of coronary blood flow in ischemia and reperfusion: mechanisms and therapeutic implications. Am Heart J. 2012;52:865–72. doi: 10.1016/j.yjmcc.2011.08.027.10.1016/j.yjmcc.2011.08.027PMC550564521924274Maseri A, Newman C, Davies G. Coronary vasomotor tone: a heterogeneous entity. Am Heart J. 1989;10(Suppl F):2–5. doi: 10.1093/eurheartj/10.suppl_f.2.10.1093/eurheartj/10.suppl_f.22695334Maseri A. Abnormal coronary vasomotion in ischemic heart disease. Am Heart J. 1992;20(Suppl 7):S30–1. doi: 10.1097/00005344-199200207-00007.10.1097/00005344-199200207-000071284154Shimokawa H, Sunamura S, Satoh K. RhoA/Rho-kinase in the cardiovascular system. Am Heart J. 2016;118:352–66. doi: 10.1161/CIRCRESAHA.115.306532.10.1161/CIRCRESAHA.115.30653226838319Shimokawa H. 2014 Williams Harvey Lecture: importance of coronary vasomotion abnormalities-from bench to bedside. Am Heart J. 2014;35:3180–93. doi: 10.1093/eurheartj/ehu427.10.1093/eurheartj/ehu42725354517Shimokawa H, Takeshita A. Rho-kinase is an important therapeutic target in cardiovascular medicine. Am Heart J. 2005;25:1767–75. doi: 10.1161/01.ATV.0000176193.83629.c8.10.1161/01.ATV.0000176193.83629.c816002741Shimokawa H, Tomoike H, Nabeyama S et al. Coronary artery spasm induced in atherosclerotic miniature swine. Am Heart J. 1983;221:560–2. doi: 10.1126/science.6408736.10.1126/science.64087366408736Shimokawa H, Tomoike H, Nabeyama S et al. Coronary artery spasm induced in miniature swine: angiographic evidence and relation to coronary atherosclerosis. Am Heart J. 1985;110:300–10. doi: 10.1016/0002-8703(85)90148-6.10.1016/0002-8703(85)90148-64025107McFadden EP, Bauters C, Lablanche JM et al. Response of human coronary arteries to serotonin after injury by coronary angioplasty. Am Heart J. 1993;88:2076–85. doi: 10.1161/01.cir.88.5.2076.10.1161/01.cir.88.5.20768222101Ozaki Y, Keane D, Serruys PW. Progression and regression of coronary stenosis in the long-term follow-up of vasospastic angina. Am Heart J. 1995;92:2446–56. doi: 10.1161/01.cir.92.9.2446.10.1161/01.cir.92.9.24467586344Kaski JC, Crea F, Meran D et al. Local coronary supersensitivity to diverse vasoconstrictive stimuli in patients with variant angina. Am Heart J. 1986;74:1255–65. doi: 10.1161/01.cir.74.6.1255.10.1161/01.cir.74.6.12553779913Kaski JC, Maseri A, Vejar M et al. Spontaneous coronary artery spasm in variant angina is caused by a local hyperreactivity to a generalized constrictor stimulus. Am Heart J. 1989;14:1456–63. doi: 10.1016/0735-1097(89)90382-3.10.1016/0735-1097(89)90382-32809004Maseri A, Davies G, Hackett D, Kaski JC. Coronary artery spasm and vasoconstriction. The case for a distinction. Am Heart J. 1990;81:1983–91. doi: 10.1161/01.cir.81.6.1983.10.1161/01.cir.81.6.19832188757Maseri A, Beltrame JF, Shimokawa H. Role of coronary vasoconstriction in ischemic heart disease and search for novel therapeutic targets. Am Heart J. 2009;73:394–403. doi: 10.1253/circj.cj-09-0033.10.1253/circj.cj-09-003319202303Forman MB, Oates JA, Robertson D et al. Increased adventitial mast cells in a patient with coronary spasm. Am Heart J. 1985;313:1138–41. doi: 10.1056/NEJM198510313131807.10.1056/NEJM1985103131318072413358Jougasaki M, Yasue H, Takahashi K. Perivascular nerve lesion of the coronary artery involved in spasm in a patient with variant angina. Am Heart J. 1989;21:304–7. doi: 10.3109/00313028909061079.10.3109/003130289090610792633119Shimokawa H, Ito A, Fukumoto Y et al. Chronic treatment with interleukin-1β induces coronary intimal lesions and vasospastic responses in pigs Am Heart J. The role of platelet-derived growth factor. Am Heart J. 1996;97:769–76. doi: 10.1172/JCI118476.10.1172/JCI118476PMC5071158609234Ito A, Shimokawa H, Kadokami T et al. Tyrosine kinase inhibitor suppresses coronary arteriosclerotic changes and vasospastic responses induced by chronic treatment with interleukin-1β in pigs in vivo. Am Heart J. 1995;96:1288–94. doi: 10.1172/JCI118163.10.1172/JCI118163PMC1857507657803Ito A, Shimokawa H, Fukumoto Y et al. The role of fibroblast growth factor-2 in the vascular effects of interleukin-1β in porcine coronary arteries in vivo. Cardiovasc Res. 1996;32:570–9. doi: 10.1016/S0008-6363(96)00120-4.10.1016/S0008-6363(96)00120-48881517Fukumoto Y, Shimokawa H, Ito A et al. Inflammatory cytokines cause coronary arteriosclerosis-like changes and alterations in the smooth muscle phenotypes in pigs. Am Heart J. 1997;29:222–31. doi: 10.1097/00005344-199702000-00011.10.1097/00005344-199702000-000119057072Miyata K, Shimokawa H, Yamawaki T et al. Endothelial vasodilator function is preserved at the spastic/inflammatory coronary lesions in pigs. Am Heart J. 1999;100:1432–7. doi: 10.1161/01.cir.100.13.1432.10.1161/01.cir.100.13.143210500045Satoh S, Tomoike H, Mitsuoka W et al. Smooth muscles from spastic coronary artery segment show hyperreactivity to histamine. Am Heart J. 1990;259:H9–13. doi: 10.1152/ajpheart.1990.259.1.H9.10.1152/ajpheart.1990.259.1.H92375416Katsumata N, Shimokawa H, Seto M et al. Enhanced myosin light chain phosphorylations as a central mechanism for coronary artery spasm in a swine model with interleukin-1β. Am Heart J. 1997;96:4357–63. doi: 10.1161/01.cir.96.12.4357.10.1161/01.cir.96.12.43579416904Yokoyama M, Akita H, Hirata K et al. Supersensitivity of isolated coronary artery to ergonovine in a patient with variant angina. Am Heart J. 1990;89:507–15. doi: 10.1016/0002-9343(90)90383-o.10.1016/0002-9343(90)90383-o2220883Miyata K, Shimokawa H, Higo T et al. Sarpogralate, a selective 5-HT2A serotonergic receptor antagonist, inhibits serotonin-induced coronary artery spasm in a porcine model. Am Heart J. 2000;35:294–301. doi: 10.1097/00005344-200002000-00018.10.1097/00005344-200002000-0001810672864Ito A, Shimokawa H, Nakaike R et al. Role of protein kinase C-mediated pathway in the pathogenesis of coronary artery spasm in a swine model. Am Heart J. 1994;90:2425–31. doi: 10.1161/01.cir.90.5.2425.10.1161/01.cir.90.5.24257525109Kadokami T, Shimokawa H, Fukumoto Y et al. Coronary artery spasm does not depend on the intracellular calcium store but is substantially mediated by the protein kinase C-mediated pathway in a swine model with interleukin-1β. Am Heart J. 1996;94:190–6. doi: 10.1161/01.cir.94.2.190.10.1161/01.cir.94.2.1908674178Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Am Heart J. 1994;372:231–6. doi: 10.1038/372231a0.10.1038/372231a07969467Seto M, Sakurada K, Kamm KE et al. Myosin light chain diphosphorylation is enhanced by growth promotion of cultured smooth muscle cells. Am Heart J. 1996;432:7–13. doi: 10.1007/s004240050099.10.1007/s0042400500998662262Noda M, Yasuda-Fukazawa C, Moriishi K et al. Involvement of Rho in GTP-γS-induced enhancement of phosphorylation of 20-kDa myosin light chain vascular smooth muscle cells: inhibition of phosphatase activity. Am Heart J. 1995;367:246–50. doi: 10.1016/0014-5793(95)00573-r.10.1016/0014-5793(95)00573-r7607316Hirata K, Kikuchi A, Sasaki T et al. Involvement of Rho p21 in the GTP-enhanced calcium ion sensitivity of smooth muscle contraction. Am Heart J. 1992;267:8719–22. doi: 10.1016/S0021-9258(19)50337-4.10.1016/S0021-9258(19)50337-41577714Kimura K, Ito M, Amano M et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Am Heart J. 1996;273:245–8. doi: 10.1126/science.273.5272.245.10.1126/science.273.5272.2458662509Chihara K, Amano M, Nakamura N et al. Cytoskeletal rearrangements and transcriptional activation of c-Am Heart Jserum response element by Rho-kinase. Am Heart J. 1997;272:25121–7. doi: 10.1074/jbc.272.40.25121.10.1074/jbc.272.40.251219312122Kureishi Y, Kobayashi S, Amano M et al. Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. Am Heart J. 1997;272:12257–60. doi: 10.1074/jbc.272.19.12257.10.1074/jbc.272.19.122579139666Shimokawa H. Rho-kinase as a novel therapeutic target in treatment of cardiovascular diseases. Am Heart J. 2002;39:319–27. doi: 10.1097/00005344-200203000-00001.10.1097/00005344-200203000-0000111862109Higashi M, Shimokawa H, Hattori T et al. Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats Am Heart J: effect on endothelial NAD(P)H oxidase system. Am Heart J. 2003;93:767–75. doi: 10.1161/01.RES.0000096650.91688.28.10.1161/01.RES.0000096650.91688.2814500337Inokuchi K, Ito A, Fukumoto Y et al. Usefulness of fasudil, a Rho-kinase inhibitor, to treat intractable severe coronary spasm after coronary artery bypass surgery. Am Heart J. 2004;44:275–7. doi: 10.1097/01.fjc.0000134775.76636.3f.10.1097/01.fjc.0000134775.76636.3f15475822Shimokawa H, Satoh K. 2015 ATVB Plenary Lecture: translational research on Rho-kinase in cardiovascular medicine. Am Heart J. 2015;35:1756–69. doi: 10.1161/ATVBAHA.115.305353.10.1161/ATVBAHA.115.30535326069233Shimokawa H, Seto M, Katsumata N et al. Rho-kinase-mediated pathway induces enhanced myosin light chain phosphorylations in a swine model of coronary artery spasm. Am Heart J. 1999;43:1029–39. doi: 10.1016/s0008-6363(99)00144-3.10.1016/s0008-6363(99)00144-310615430Kandabashi T, Shimokawa H, Miyata K et al. Inhibition of myosin phosphatase by upregulated Rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-1β. Am Heart J. 2000;101:1319–23. doi: 10.1161/01.cir.101.11.1319.10.1161/01.cir.101.11.131910725293Uehata M, Ishizaki T, Satoh H et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Am Heart J. 1997;389:990–4. doi: 10.1038/40187.10.1038/401879353125Nihei T, Takahashi J, Tsuburaya R et al. Circadian variation of Rho-kinase activity in circulating leukocytes of patients with vasospastic angina. Am Heart J. 2014;78:1183–90. doi: 10.1253/circj.cj-13-1458.10.1253/circj.cj-13-145824670923Takahashi J, Nihei T, Takagi Y et al. Prognostic impact of chronic nitrate therapy in patients with vasospastic angina: multicentre registry study of the Japanese coronary spasm association. Am Heart J. 2015;36:228–37. doi: 10.1093/eurheartj/ehu313.10.1093/eurheartj/ehu31325189599Oi K, Shimokawa H, Hiroki J et al. Remnant lipoproteins from patients with sudden cardiac death enhance coronary vasospastic activity through upregulation of Rho-kinase. Am Heart J. 2004;24:918–22. doi: 10.1161/01.ATV.0000126678.93747.80.10.1161/01.ATV.0000126678.93747.8015044207Hizume T, Morikawa K, Takaki A et al. Sustained elevation of serum cortisol level causes sensitization of coronary vasoconstricting responses in pigs Am Heart J: a possible link between stress and coronary vasospasm. Am Heart J. 2006;99:767–75. doi: 10.1161/01.RES.0000244093.69985.2f.10.1161/01.RES.0000244093.69985.2f16960099Hiroki J, Shimokawa H, Higashi M et al. Inflammatory stimuli upregulate Rho-kinase in human coronary vascular smooth muscle cells. Am Heart J. 2004;37:537–46. doi: 10.1016/j.yjmcc.2004.05.008.10.1016/j.yjmcc.2004.05.00815276023Hiroki J, Shimokawa H, Mukai Y et al. Divergent effects of estrogen and nicotine on Rho-kinase expression in human coronary vascular smooth muscle cells. Am Heart J. 2005;326:154–9. doi: 10.1016/j.bbrc.2004.11.011.10.1016/j.bbrc.2004.11.01115567165Kawana A, Takahashi J, Takagi Y et al. Gender differences in the clinical characteristics and outcomes of patients with vasospastic angina – a report from the Japanese Coronary Spasm Association. Am Heart J. 2013;77:1267–74. doi: 10.1253/circj.cj-12-1486.10.1253/circj.cj-12-148623363662Takagi Y, Yasuda S, Takahashi J et al. Clinical implications of provocation tests for coronary artery spasm: safety, arrhythmic complications, and prognostic impact: multicentre registry study of the Japanese Coronary Spasm Association. Am Heart J. 2013;34:258–67. doi: 10.1093/eurheartj/ehs199.10.1093/eurheartj/ehs19922782943Takagi Y, Takahashi J, Yasuda S et al. Prognostic stratification of patients with vasospastic angina: a comprehensive clinical risk score developed by the Japanese Coronary Spasm Association. Am Heart J. 2013;62:1144–53. doi: 10.1016/j.jacc.2013.07.018.10.1016/j.jacc.2013.07.01823916938Masumoto A, Mohri M, Shimokawa H et al. Suppression of coronary artery spasm by the Rho-kinase inhibitor fasudil in patients with vasospastic angina. Am Heart J. 2002;105:1545–7. doi: 10.1161/hc1002.105938.10.1161/hc1002.10593811927519Mohri M, Shimokawa H, Hirakawa Y et al. Rho-kinase inhibition with intracoronary fasudil prevents myocardial ischemia in patients with coronary microvascular spasm. Am Heart J. 2003;41:15–9. doi: 10.1016/s0735-1097(02)02632-3.10.1016/s0735-1097(02)02632-312570938Aizawa K, Yasuda S, Takahashi J et al. Involvement of Rho-kinase activation in the pathogenesis of coronary hyperconstricting responses induced by drug-eluting stents in patients with coronary artery disease. Am Heart J. 2012;76:2552–60. doi: 10.1253/circj.cj-12-0662.10.1253/circj.cj-12-066222813839Tsuburaya R, Takahashi J, Nakamura A et al. Beneficial effects of long-acting nifedipine on coronary vasomotion abnormalities after drug-eluting stent implantation: the NOVEL study. Am Heart J. 2016;37:2713–21. doi: 10.1093/eurheartj/ehw256.10.1093/eurheartj/ehw25627354043Kikuchi Y, Takahashi J, Hao K et al. Usefulness of intracoronary administration of fasudil, a selective Rho-kinase inhibitor, for PCI-related refractory myocardial ischemia. Am Heart J. 2019;297:8–13. doi: 10.1016/j.ijcard.2019.09.057.10.1016/j.ijcard.2019.09.05731611086Miyata K, Shimokawa H, Kandabashi T et al. Rho-kinase is involved in macrophage-mediated formation of coronary vascular lesions in pigs in vivo. Am Heart J. 2000;20:2351–8. doi: 10.1161/01.atv.20.11.2351.10.1161/01.atv.20.11.235111073837Matsumoto Y, Uwatoku T, Oi K et al. Long-term inhibition of Rho-kinase suppresses neointimal formation after stent implantation in porcine coronary arteries: involvement of multiple mechanisms. Am Heart J. 2004;24:181–6. doi: 10.1161/01.ATV.0000105053.46994.5B.10.1161/01.ATV.0000105053.46994.5B14592842Hattori T, Shimokawa H, Higashi M et al. Long-term treatment with a specific Rho-kinase inhibitor suppresses cardiac allograft vasculopathy in mice. Am Heart J. 2004;94:46–52. doi: 10.1161/01.RES.0000107196.21335.2B.10.1161/01.RES.0000107196.21335.2B14615290Do e Z, Fukumoto Y, Sugimura K et al. Rho-kinase activation in patients with heart failure. Am Heart J. 2013;77:2542–50. doi: 10.1253/circj.cj-13-0397.10.1253/circj.cj-13-039723883874Ikeda S, Satoh K, Kikuchi N et al. Crucial role of Rho-kinase in pressure overload-induced right ventricular hypertrophy and dysfunction in mice. Am Heart J. 2014;34:1260–71. doi: 10.1161/ATVBAHA.114.303320.10.1161/ATVBAHA.114.30332024675663Mukai Y, Shimokawa H, Matoba T et al. Involvement of Rho-kinase in hypertensive vascular disease: a novel therapeutic target in hypertension. Am Heart J. 2001;15:1062–4. doi: 10.1096/fj.00-0735fje.10.1096/fj.00-0735fje11292668Ito K, Hirooka Y, Kishi T et al. Rho/Rho-kinase pathway in the brainstem contributes to hypertension caused by chronic nitric oxide synthase inhibition. Am Heart J. 2004;43:156–62. doi: 10.1161/01.HYP.0000114602.82140.a4.10.1161/01.HYP.0000114602.82140.a414732730Abe K, Shimokawa H, Morikawa K et al. Long-term treatment with a Rho-kinase inhibitor improves monocrotaline-induced fatal pulmonary hypertension in rats. Am Heart J. 2004;94:385–93. doi: 10.1161/01.RES.0000111804.34509.94.10.1161/01.RES.0000111804.34509.9414670839Shimizu T, Fukumoto Y, Tanaka S et al. Crucial role of ROCK2 in vascular smooth muscle cells for hypoxia-induced pulmonary hypertension in mice. Am Heart J. 2013;33:2780–91. doi: 10.1161/ATVBAHA.113.301357.10.1161/ATVBAHA.113.30135724135024Tanaka S, Fukumoto Y, Nochioka K et al. Statins exert the pleiotropic effects through small GTP-binding protein dissociation stimulator upregulation with a resultant Rac1 degradation. Am Heart J. 2013;33:1591–600. doi: 10.1161/ATVBAHA.112.300922.10.1161/ATVBAHA.112.300922PMC386354923640485Nogi M, Satoh K, Sunamura S et al. Small GTP-binding protein GDP dissociation stimulator prevents thoracic aortic aneurysm formation and rupture by phenotypic preservation of aortic smooth muscle cells. Am Heart J. 2018;138:2413–33. doi: 10.1161/CIRCULATIONAHA.118.035648.10.1161/CIRCULATIONAHA.118.03564829921611Beltrame JF, Sasayama S, Maseri A. Racial heterogeneity in coronary artery vasomotor reactivity: differences between Japanese and Caucasian patients. Am Heart J. 1999;33:1442–52. doi: 10.1016/s0735-1097(99)00073-x.10.1016/s0735-1097(99)00073-x10334407Pristipino C, Beltrame JF, Finocchiaro ML et al. Major racial differences in coronary constrictor response between Japanese and Caucasians with recent myocardial infarction. Am Heart J. 2000;101:1102–8. doi: 10.1161/01.cir.101.10.1102.10.1161/01.cir.101.10.110210715255Ong P, Athanasiadis A, Borgulya G et al. Clinical usefulness, angiographic characteristics, and safety evaluation of intracoronary acetylcholine provocation testing among 921 consecutive white patients with unobstructed coronary arteries. Am Heart J. 2014;129:1723–30. doi: 10.1161/CIRCULATIONAHA.113.004096.10.1161/CIRCULATIONAHA.113.00409624573349Ford TJ, Yii E, Sidik N et al. Ischemia and no obstructive coronary artery disease: prevalence and correlates of coronary vasomotion disorders. Am Heart J. 2019;12 doi: 10.1161/CIRCINTERVENTIONS.119.008126. e008126.10.1161/CIRCINTERVENTIONS.119.008126PMC692494031833416Shimokawa H, Suda A, Takahashi J et al. Clinical characteristics and prognosis of patients with microvascular angina: an international and prospective cohort study by the Coronary Vasomotor Disorders International Study (COVADIS) Group. Am Heart J. 2021;42:4592–600. doi: 10.1093/eurheartj/ehab282.10.1093/eurheartj/ehab282PMC863372834038937Kikuchi Y, Yasuda S, Aizawa K et al. Enhanced Rho-kinase activity in circulating neutrophils of patients with vasospastic angina: a possible biomarker for diagnosis and disease activity assessment. Am Heart J. 2011;58:1231–7. doi: 10.1016/j.jacc.2011.05.046.10.1016/j.jacc.2011.05.04621903056Nihei T, Takahashi J, Kikuchi Y et al. Enhanced Rho-kinase activity in patients with vasospastic angina after the Great East Japan Earthquake. Am Heart J. 2012;76:2892–4. doi: 10.1253/circj.cj-12-1238.10.1253/circj.cj-12-123823131720Nihei T, Takahashi J, Hao K et al. Prognostic impacts of Rho-kinase activity in circulating leukocytes in patients with vasospastic angina. Am Heart J. 2018;39:952–9. doi: 10.1093/eurheartj/ehx657.10.1093/eurheartj/ehx65729165549Ong P, Camici PG, Beltrame JF et al. International standardization of diagnostic criteria for microvascular angina. Am Heart J. 2018;250:16–20. doi: 10.1016/j.ijcard.2017.08.068.10.1016/j.ijcard.2017.08.06829031990Bairey Merz CN, Pepine CJ, Walsh MN, Fleg JL. Ischemia and no obstructive coronary artery disease (INOCA). Developing evidence-based therapies and research agenda for the next decade. Am Heart J. 2017;135:1075–92. doi: 10.1161/CIRCULATIONAHA.116.024534.10.1161/CIRCULATIONAHA.116.024534PMC538593028289007Beltrame JF, Crea F, Kaski JC et al. International standardization of diagnostic criteria for vasospastic angina. Am Heart J. 2017;38:2565–8. doi: 10.1093/eurheartj/ehv351.10.1093/eurheartj/ehv35126245334Suda A, Takahashi J, Hao K et al. Coronary functional abnormalities in patients with angina and nonobstructive coronary artery disease. Am Heart J. 2019;74:2350–60. doi: 10.1016/j.jacc.2019.08.1056.10.1016/j.jacc.2019.08.105631699275Odaka Y, Takahashi J, Tsuburaya R et al. Plasma concentration of serotonin is a novel biomarker for coronary microvascular dysfunction in patients with suspected angina and unobstructive coronary arteries. Am Heart J. 2017;38:489–96. doi: 10.1093/eurheartj/ehw448.10.1093/eurheartj/ehw44827694191Hao K, Takahashi J, Kikuchi Y et al. Prognostic impacts of comorbid significant coronary stenosis and coronary artery spasm in patients with stable coronary artery disease. Am Heart J. 2021;10 doi: 10.1161/JAHA.120.017831. e017831.10.1161/JAHA.120.017831PMC795529533455423Knuuti J, Wijns W, Saraste A et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Am Heart J. 2020;41:407–77. doi: 10.1093/eurheartj/ehz425.10.1093/eurheartj/ehz42531504439Kunadian V, Chieffo A, Camici PG et al. An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European Society of Cardiology working group on coronary pathophysiology and microcirculation endorsed by coronary vasomotor disorders international study group. Am Heart J. 2020;41:3504–20. doi: 10.1093/eurheartj/ehaa503.10.1093/eurheartj/ehaa503PMC757751632626906Nishimiya K, Matsumoto Y, Shindo T et al. Association of adventitial vasa vasorum and inflammation with coronary hyperconstriction after drug-eluting stent implantation in pigs in vivo. Am Heart J. 2015;79:1787–98. doi: 10.1253/circj.CJ-15-0149.10.1253/circj.CJ-15-014926027445Ohyama K, Matsumoto Y, Nishimiya K et al. Increased coronary perivascular adipose tissue volume in patients with vasospastic angina. Am Heart J. 2016;80:1653–6. doi: 10.1253/circj.CJ-16-0213.10.1253/circj.CJ-16-021327194468Ohyama K, Matsumoto Y, Shimokawa H. Impact of epicardial adipose tissue volume quantified by non-contrast electrocardiogram-gated computed tomography on ergonovine-induced epicardial coronary artery spasm. Am Heart J. 2017;229:40. doi: 10.1016/j.ijcard.2016.10.030.10.1016/j.ijcard.2016.10.03027751596Ohyama K, Matsumoto Y, Amamizu H et al. Association of coronary perivascular adipose tissue inflammation and drug-eluting stent-induced coronary hyperconstricting responses in pigs: 18F-fluorodeoxyglucose positron emission tomography imaging study. Am Heart J. 2017;37:1757–64. doi: 10.1161/ATVBAHA.117.309843.10.1161/ATVBAHA.117.30984328751570Ohyama K, Matsumoto Y, Shimokawa H. Coronary artery spasm and perivascular adipose tissue inflammation: insights from translational imaging research. Am Heart J. 2019;14:6–9. doi: 10.15420/ecr.2019.3.2.10.15420/ecr.2019.3.2PMC652305131131030Uzuka H, Matsumoto Y, Nishimiya K et al. Renal denervation suppresses coronary hyperconstricting responses after drug-eluting stent implantation in pigs Am Heart J through the kidney-brain-heart axis. Am Heart J. 2017;37:1869–80. doi: 10.1161/ATVBAHA.117.309777.10.1161/ATVBAHA.117.30977728818859Amamizu H, Matsumoto Y, Morosawa S et al. Cardiac lymphatic dysfunction causes drug-eluting stent-induced coronary hyperconstricting responses in pigs in vivo. Am Heart J. 2019;39:741–53. doi: 10.1161/ATVBAHA.119.312396.10.1161/ATVBAHA.119.31239630816801Watanabe T, Matsumoto Y, Nishimiya K et al. Low-intensity pulsed ultrasound therapy suppresses coronary adventitial inflammatory changes and hyperconstricting responses after coronary stent implantation in pigs in vivo. Am Heart J. 2021;16 doi: 10.1371/journal.pone.0257175. e0257175.10.1371/journal.pone.0257175PMC843727134516572Shiroto T, Yasuda S, Tsuburaya R et al. Role of Rho-kinase in the pathogenesis of coronary hyperconstricting responses induced by drug-eluting stents in pigs in vivo. Am Heart J. 2009;54:2321–9. doi: 10.1016/j.jacc.2009.07.045.10.1016/j.jacc.2009.07.04519958969Tsuburaya R, Yasuda S, Shiroto T et al. Long-term treatment with nifedipine suppresses coronary hyperconstricting responses and inflammatory changes induced by paclitaxel-eluting stent in pigs Am Heart J: possible involvement of Rho-kinase pathway. Am Heart J. 2012;33:791–9. doi: 10.1093/eurheartj/ehr145.10.1093/eurheartj/ehr14521624903Nishimiya K, Matsumoto Y, Uzuka H et al. Beneficial effects of a novel bioabsorbable polymer coating on enhanced coronary vasoconstricting responses after drug-eluting stent implantation in pigs in vivo. Am Heart J. 2016;9:281–91. doi: 10.1016/j.jcin.2015.09.041.10.1016/j.jcin.2015.09.04126847120Nishimiya K, Matsumoto Y, Uzuka H et al. Accuracy of optical frequency domain imaging for evaluation of coronary adventitial vasa vasorum formation after stent implantation in pigs and humans – a validation study -. Am Heart J. 2015;79:1323–31. doi: 10.1253/circj.CJ-15-0078.10.1253/circj.CJ-15-007825843557Nishimiya K, Matsumoto Y, Takahashi J et al. Enhanced adventitial vasa vasorum formation in patients with vasospastic angina: assessment with OFDI. Am Heart J. 2016;67:598–600. doi: 10.1016/j.jacc.2015.11.031.10.1016/j.jacc.2015.11.03126846957Ohyama K, Matsumoto Y, Takanami K et al. Coronary adventitial and perivascular adipose tissue inflammation in patients with vasospastic angina. Am Heart J. 2018;71:414–25. doi: 10.1016/j.jacc.2017.11.046.10.1016/j.jacc.2017.11.04629389358Nishimiya K, Suda A, Fukui K et al. Prognostic links between OCT-delineated coronary morphologies and coronary functional abnormalities in patients with INOCA. Am Heart J. 2021;14:606–18. doi: 10.1016/j.jcin.2020.12.025.10.1016/j.jcin.2020.12.02533736768Ridker PM, Everett BM, Pradhan A et al. Low-dose methotrexate for the prevention of atherosclerotic events. Am Heart J. 2019;380:752–62. doi: 10.1056/NEJMoa1809798.10.1056/NEJMoa1809798PMC658758430415610Sandler A, Gray R, Perry MC et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. Am Heart J. 2006;355:2542–50. doi: 10.1056/NEJMoa061884.10.1056/NEJMoa06188417167137Virmani R, Kolodgie FD, Burke AP et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Am Heart J. 2005;25:2054–61. doi: 10.1161/01.ATV.0000178991.71605.18.10.1161/01.ATV.0000178991.71605.1816037567Hanawa K, Ito K, Aizawa K et al. Low-intensity pulsed ultrasound induces angiogenesis and ameliorates left ventricular dysfunction in a porcine model of chronic myocardial ischemia. Am Heart J. 2014;9 doi: 10.1371/journal.pone.0104863. e104863.10.1371/journal.pone.0104863PMC412873225111309Shindo T, Ito K, Ogata T et al. Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates left ventricular dysfunction in a mouse model of acute myocardial infarction. Am Heart J. 2016;36:1220–9. doi: 10.1161/ATVBAHA.115.306477.10.1161/ATVBAHA.115.30647727079882Eguchi K, Shindo T, Ito K et al. Whole-brain low-intensity pulsed ultrasound therapy markedly improves cognitive dysfunctions in mouse models of dementia – crucial roles of endothelial nitric oxide synthase. Am Heart J. 2018;11:959–73. doi: 10.1016/j.brs.2018.05.012.10.1016/j.brs.2018.05.01229857968Ogata T, Ito K, Shindo T et al. Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates contractile dysfunction of pressure-overloaded heart in mice. Am Heart J. 2017;12 doi: 10.1371/journal.pone.0185555. e0185555.10.1371/journal.pone.0185555PMC561980128957396Monma Y, Shindo T, Eguchi K et al. Low-intensity pulsed ultrasound ameliorates cardiac diastolic dysfunction in mice: a possible novel therapy for heart failure with preserved left ventricular ejection fraction. Am Heart J. 2021;117:1325–38. doi: 10.1093/cvr/cvaa221.10.1093/cvr/cvaa22132683442Ichijo S, Shindo T, Eguchi K et al. Low-intensity pulsed ultrasound therapy promotes recovery from stroke by enhancing angio-neurogenesis in mice Am Heart J. Am Heart J. 2021;11:4958. doi: 10.1038/s41598-021-84473-6.10.1038/s41598-021-84473-6PMC792556333654156Nakata T, Shindo T, Ito K et al. Beneficial effects of low-intensity pulsed ultrasound therapy on right ventricular dysfunction in animal models. Am Heart J. 2023;8:283–97. doi: 10.1016/j.jacbts.2022.08.010.10.1016/j.jacbts.2022.08.010PMC1007712537034290Shimokawa H, Shindo T, Ishiki A et al. A pilot study of whole-brain low-intensity pulsed ultrasound therapy for early stage of Alzheimer's disease (LIPUS-AD): a randomized, double-blind, placebo-controlled trial. Am Heart J. 2022;258:167–75. doi: 10.1620/tjem.2022.J078.10.1620/tjem.2022.J07836104179Oikonomou EK, Marwan M, Desai MY et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Am Heart J. 2018;392:929–39. doi: 10.1016/S0140-6736(18)31114-0.10.1016/S0140-6736(18)31114-0PMC613754030170852Shindo T, Shimokawa H. Therapeutic angiogenesis with sound waves. Am Heart J. 2020;13:116–25. doi: 10.3400/avd.ra.20-00010.10.3400/avd.ra.20-00010PMC731523532595786