Most of the video content on the Internet today is distributed through online streaming platforms. To ensure user privacy, data transmissions are often encrypted using cryptographic protocols. In previous research, we first experimentally validated the idea that the amount of transmitted data belonging to a particular video stream is not constant over time or that it changes periodically and forms a specific fingerprint. Based on the knowledge of the fingerprint of a specific video stream, this video stream can be subsequently identified. Over several months of intensive work, our team has created a large dataset containing a large number of video streams that were captured by network traffic probes during their playback by end users. The video streams were deliberately chosen to fall thematically into pre-selected categories. We selected two primary platforms for streaming - PeerTube and YouTube The first platform was chosen because of the possibility of modifying any streaming parameters, while the second one was chosen because it is used by many people worldwide. Our dataset can be used to create and train machine learning models or heuristic algorithms, allowing encrypted video stream identification according to their content resp. type category or specifically.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338327PMC
http://dx.doi.org/10.1016/j.dib.2023.109335DOI Listing

Publication Analysis

Top Keywords

video stream
20
video
8
video streams
8
stream
5
encrypted network
4
network video
4
stream dataset
4
dataset video
4
video content
4
content internet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!